Abstract

The well-known effects of the spin-orbit interactions of light are manifestations of the pair’s mutual influence of the three types of angular momentum (AM) of light, namely, the spin AM, the extrinsic orbital AM and the intrinsic orbital AM. Here we propose a convenient classification of the effects of the spin-orbit interactions of light and we observe one of the new effects in the frame of this classification, which is determined by the joint influence of two types of the AM on the third type of the AM, namely, the influence of the spin AM and the extrinsic orbital AM on the intrinsic orbital AM. We experimentally studied the propagation of circularly polarized light through an optical fiber coiled into a helix. We have found that the spin AM and the helix parameters affect the spatial structure of the radiation transmitted through the optical fiber. We found out that the structure of the light field rotates when changing the sign of circular polarization. The angle of rotation depends on the parameters of the helix. The results can be used to develop the general theory of spinning particles and can find application in metrology methods and nanooptics devices.

© 2016 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Direct and reciprocal spin-orbit interaction effects in a graded-index medium

T. Pradeep Chakravarthy and Nirmal K. Viswanathan
OSA Continuum 2(5) 1576-1589 (2019)

Optical vortices and topological phase in strongly anisotropic coiled few-mode optical fibers

Constantine N. Alexeyev, Boris A. Lapin, and Maxim A. Yavorsky
J. Opt. Soc. Am. B 24(10) 2666-2675 (2007)

Wave propagation in a guiding structure: one step beyond the paraxial approximation

A. Yu. Savchencko and B. Ya. Zel’dovich
J. Opt. Soc. Am. B 13(2) 273-281 (1996)

References

  • View by:
  • |
  • |
  • |

  1. R. A. Beth, “Mechanical detection and measurement of the angular momentum of light,” Phys. Rev. 50, 115–125 (1936).
    [Crossref]
  2. L. Allen, S. M. Barnett, and M. J. Padgett, Optical Angular Momentum (Institute of Physics Publishing, 2003).
    [Crossref]
  3. K. Bliokh, “Geometrical optics of beams with vortices: Berry phase and orbital angular momentum Hall effect,” Phys. Rev. Lett. 97, 043901 (2006).
    [Crossref] [PubMed]
  4. A. Bekshaev, K. Y. Bliokh, and M. Soskin, “Internal flows and energy circulation in light beams,” J. Opt. 13, 53001 (2011).
    [Crossref]
  5. A. Dugin, B. Zel’dovich, N. Kundikova, and V. Liberman, “Effect of circular polarization on the propagation of light through an optical fiber,” J. Exp. Theor. Phys. Lett. 53, 197–199 (1991).
  6. V. Liberman and B. Zel’dovich, “Spin-orbit interaction of a photon in an inhomogeneous medium,” Phys. Rev. A 46, 5199–5207 (1992).
    [Crossref] [PubMed]
  7. K. Bliokh and Y. Bliokh, “Topological spin transport of photons: the optical Magnus effect and Berry phase,” Phys. Lett. A 333, 181–186 (2004).
    [Crossref]
  8. M. Onoda, S. Murakami, and N. Nagaosa, “Hall effect of light,” Phys. Rev. Lett. 93, 083901 (2004).
    [Crossref] [PubMed]
  9. K. Bliokh, A. Niv, V. Kleiner, and E. Hasman, “Geometrodynamics of spinning light,” Nat. Photonics 2, 748–753 (2008).
    [Crossref]
  10. A. Bérard and H. Mohrbach, “Spin Hall effect and Berry phase of spinning particles,” Phys. Lett. A 352, 190–195 (2006).
    [Crossref]
  11. C. Duval, Z. Horváth, and P. Horváthy, “Geometrical spinoptics and the optical Hall effect,” J. Geom. Phys. 57, 925–941 (2007).
    [Crossref]
  12. K. Andrzejewski, A. Kijanka-Dec, P. Kosiński, and P. Maślanka, “Chiral fermions, massless particles and Poincare covariance,” Phys. Lett. B 746, 417–423 (2015).
    [Crossref]
  13. C. Duval and P. A. Horváthy, “Chiral fermions as classical massless spinning particles,” Phys. Rev. D 91, 045013 (2015).
    [Crossref]
  14. J.-M. Ménard, A. E. Mattacchione, M. Betz, and H. M. van Driel, “Imaging the spin Hall effect of light inside semiconductors via absorption,” Opt. Lett. 34, 2312–2314 (2009).
    [Crossref] [PubMed]
  15. X. Zhou, Z. Xiao, H. Luo, and S. Wen, “Experimental observation of the spin Hall effect of light on a nanometal film via weak measurements,” Phys. Rev. A 85, 043809 (2012).
    [Crossref]
  16. M. Bolshakov, N. Kundikova, and I. Popkov, “Optical method for investigation of the parameters of the thin film,” Progress in Electromagnetics Research Symposium 2015-Janua, 2042–2045 (2015).
  17. X. Zhou, X. Ling, H. Luo, and S. Wen, “Identifying graphene layers via spin Hall effect of light,” Appl. Phys. Lett. 101, 251602 (2012).
    [Crossref]
  18. X. Zhou, J. Zhang, X. Ling, S. Chen, H. Luo, and S. Wen, “Photonic spin Hall effect in topological insulators,” Phys. Rev. A 88, 53840 (2013).
    [Crossref]
  19. S. Slussarenko, V. D’Ambrosio, B. Piccirillo, L. Marrucci, and E. Santamato, “The polarizing Sagnac interferometer: a tool for light orbital angular momentum sorting and spin-orbit photon processing,” Opt. Express 18, 27205–27216 (2010).
    [Crossref]
  20. Y. Jin, Z. Wang, Y. Lv, H. Liu, R. Liu, P. Zhang, H. Li, H. Gao, and F. Li, “Variation of polarization distribution of reflected beam caused by spin separation,” Opt. Express 20, 1975–1980 (2012).
    [Crossref] [PubMed]
  21. Q. Xu, L. Chen, M. G. Wood, P. Sun, and R. M. Reano, “Electrically tunable optical polarization rotation on a silicon chip using Berry’s phase,” Nat. Commun. 5, 5337 (2014).
    [Crossref]
  22. N. V. Proscia, M. Moocarme, R. Chang, I. Kretzschmar, V. M. Menon, and L. T. Vuong, “Control of photo-induced voltages in plasmonic crystals via spin-orbit interactions,” Opt. Express 24, 10402–10411 (2016).
    [Crossref] [PubMed]
  23. K. Y. Bliokh, F. J. Rodríguez-Fortuño, F. Nori, and A. V. Zayats, “Spin-orbit interactions of light,” Nat. Photonics 9, 796–808 (2015).
    [Crossref]
  24. F. I. Fedorov, “On the theory of total internal reflection,” Dokl. Akad. Nauk SSSR 105(5), 465–469 (1955).
  25. C. Imbert, “Experimental proof of the photon’s translational inertial spin effect,” Phys. Lett. A 31, 337–338 (1970).
    [Crossref]
  26. K. Bliokh and Y. Bliokh, “Conservation of angular momentum, transverse shift, and spin Hall effect in reflection and refraction of an electromagnetic wave packet,” Phys. Rev. Lett. 96, 073903 (2006).
    [Crossref] [PubMed]
  27. O. Hosten and P. Kwiat, “Observation of the spin Hall effect of light via weak measurements,” Science 319, 787–790 (2008).
    [Crossref] [PubMed]
  28. K. Bliokh and A. Aiello, “Goos-Hänchen and Imbert-Fedorov beam shifts: an overview,” J. Opt. 15, 014001 (2013).
    [Crossref]
  29. L. Marrucci, C. Manzo, and D. Paparo, “Optical spin-to-orbital angular momentum conversion in inhomogeneous anisotropic media,” Phys. Rev. Lett. 96, 163905 (2006).
    [Crossref] [PubMed]
  30. S. Slussarenko, A. Murauski, T. Du, V. Chigrinov, L. Marrucci, and E. Santamato, “Tunable liquid crystal q-plates with arbitrary topological charge,” Opt. Express 19, 4085–4090 (2011).
    [Crossref] [PubMed]
  31. Y. Vasylkiv, I. Skab, and R. Vlokh, “Efficiency of spin-to-orbit conversion in crystals subjected to torsion stresses,” Ukr. J. Phys. Opt. 14, 50–56 (2013).
    [Crossref]
  32. A. V. Dooghin, N. D. Kundikova, V. S. Liberman, and B. Y. Zeldovich, “Optical Magnus effect,” Phys. Rev. A 45, 8204–8208 (1992).
    [Crossref] [PubMed]
  33. M. Y. Darsht, B. Y. Zel’dovich, I. V. Kataevskaya, and N. D. Kundikova, “Formation of an isolated wavefront dislocation,” J. Exp. Theor. Phys. 80, 817–821 (1995).
  34. Y. Zhao, J. S. Edgar, G. D. M. Jeffries, D. McGloin, and D. T. Chiu, “Spin-to-orbital angular momentum conversion in a strongly focused optical beam,” Phys. Rev. Lett. 99, 073901 (2007).
    [Crossref] [PubMed]
  35. K. Bliokh, E. A. Ostrovskaya, M. A. Alonso, O. G. Rodríguez-Herrera, D. Lara, and C. Dainty, “Spin-to-orbital angular momentum conversion in focusing, scattering, and imaging systems,” Opt. Express 19, 26132–26149 (2011).
    [Crossref]
  36. N. B. Baranova, A. Y. Savchenko, and B. Y. Zel’dovich, “Transverse shift of a focal spot due to switching of the sign of circular polarization,” J. Exp. Theor. Phys. Lett. 59, 232–234 (1994).
  37. B. Zel’dovich, N. Kundikova, and L. Rogacheva, “Observed transverse shift of a focal spot upon a change in the sign of circular polarization,” J. Exp. Theor. Phys. Lett. 59, 766–769 (1994).
  38. N. D. Kundikova, F. V. Podgornov, L. F. Rogacheva, and B. Y. Zel’dovich, “Manifestation of spin-orbit interaction of a photon in a vacuum,” Pure Appl. Opt. A 4, 179–183 (1995).
    [Crossref]
  39. L. T. Vuong, A. J. L. Adam, J. M. Brok, P. C. M. Planken, and H. P. Urbach, “Electromagnetic spin-orbit interactions via scattering of subwavelength apertures,” Phys. Rev. Lett. 104, 083903 (2010).
    [Crossref] [PubMed]
  40. S. Rytov, “On transition from wave to geometrical optics,” Dokl. Akad. Nauk SSSR 18, 263–266 (1938).
  41. V. Vladimirskii, “The rotation of a polarization plane for curved light ray,” Dokl. Akad. Nauk SSSR 21, 222–225 (1941).
  42. R. Chiao and Y.-S. Wu, “Manifestations of Berry’s topological phase for the photon,” Phys. Rev. Lett. 57, 933–936 (1986).
    [Crossref] [PubMed]
  43. M. V. Berry, “Interpreting the anholonomy of coiled light,” Nature 326, 277–278 (1987).
    [Crossref]
  44. A. Tomita and R. Chiao, “Observation of Berry’s topological phase by use of an optical fiber,” Phys. Rev. Lett. 57, 937–940 (1986).
    [Crossref] [PubMed]
  45. B. Y. Zel’dovich and N. D. Kundikova, “Intrafibre rotation of the plane of polarisation,” Quantum Electron. 25, 172–174 (1995).
    [Crossref]
  46. K. N. Alekseyev and M. A. Yavorsky, “Propagation of optical vortices in coiled weakly guiding optical fibers,” Opt. Spectrosc. 102, 754–759 (2007).
    [Crossref]
  47. I. V. Kataevskaya and N. D. Kundikova, “Influence of the helical shape of a fibre waveguide on the propagation of light,” Quantum Electron. 25, 927–928 (1995).
    [Crossref]
  48. M. V. Bolshakov, A. V. Guseva, N. D. Kundikova, and E. S. Samkova, “Polarized light propagation along a helical trajectory,” Proc. SPIE 8011, 80114Q (2011).
    [Crossref]
  49. S. Liu, M. Wang, P. Li, P. Zhang, and J. Zhao, “Abrupt polarization transition of vector autofocusing Airy beams,” Opt. Lett. 38, 2416–2418 (2013).
    [Crossref] [PubMed]
  50. V. Fedoseyev, “Spin-independent transverse shift of the centre of gravity of a reflected and of a refracted light beam,” Opt. Commun. 193, 9–18 (2001).
    [Crossref]
  51. K. Bliokh, I. V. Shadrivov, and Y. S. Kivshar, “Goos-Hänchen and Imbert-Fedorov shifts of polarized vortex beams,” Opt. Lett. 34, 389–391 (2009).
    [Crossref] [PubMed]
  52. M. Merano, N. Hermosa, J. P. Woerdman, and A. Aiello, “How orbital angular momentum affects beam shifts in optical reflection,” Phys.Rev. A 82, 023817 (2010).
  53. M. R. Dennis and J. B. Götte, “Topological aberration of optical vortex beams: determining dielectric interfaces by optical singularity shifts,” Phys. Rev. Lett. 109, 183903 (2012).
    [Crossref] [PubMed]
  54. H. Kobayashi, K. Nonaka, and M. Kitano, “Helical mode conversion using conical reflector,” Opt. Express 20, 14064–14074 (2012).
    [Crossref] [PubMed]
  55. M. Darscht, B. Zel’dovich, R. Kowarschik, and N. Kundikova, “Image rotation in a multimode fiber under the change a sign of circular polarization,” Proc. Chel. Sci. Center 2, 10–14 (2003).
  56. S. Asselborn, N. Kundikova, and I. Novikov, “A method of measurement of polarized light ellipticity only,” Proc. SPIE 6024, 60240D (2006).
    [Crossref]
  57. A. W. Snyder and J. D. Love, Optical Waveguide Theory (Chapman and Hall, 2012).
  58. M. V. Bolshakov, N. D. Kundikova, and M. A. Vlazneva, “Modal power decomposition of light propagating through multimode optical fiber,” Opt. Commun. 365, 1–6 (2016).
    [Crossref]
  59. N. D. Kundikova, B. Y. Zel’dovich, I. V. Zhirgalova, and V. A. Goloveshkin, “The effects of spin-orbit interaction of a photon and their analogues in mechanics,” Pure Appl. Opt. A 3, 815–819 (1994).
    [Crossref]
  60. V. S. Liberman and B. Y. Zel’dovich, “Spin-orbit polarization effects in isotropic multimode fibres,” Pure Appl. Opt. A 2, 367–382 (1993).
    [Crossref]
  61. B. Y. Zel’dovich, I. V. Kataevskaya, and N. Kundikova, “Inhomogeneity of the optical Magnus effect,” Quantum Electron. 26, 87–88 (1996).
    [Crossref]
  62. M. Cronin-Golomb, B. Fischer, J. White, and A. Yariv, “Theory and applications of four-wave mixing in photorefractive media,” IEEE J. Quantum Elect. 20, 12–30 (1984).
    [Crossref]
  63. E. Bibikova and N. Kundikova, “Properties of an adjustable quarter-wave system under conditions of multiple beam interference,” Appl. Optics 52, 1852–1856 (2013).
    [Crossref]

2016 (2)

N. V. Proscia, M. Moocarme, R. Chang, I. Kretzschmar, V. M. Menon, and L. T. Vuong, “Control of photo-induced voltages in plasmonic crystals via spin-orbit interactions,” Opt. Express 24, 10402–10411 (2016).
[Crossref] [PubMed]

M. V. Bolshakov, N. D. Kundikova, and M. A. Vlazneva, “Modal power decomposition of light propagating through multimode optical fiber,” Opt. Commun. 365, 1–6 (2016).
[Crossref]

2015 (3)

K. Y. Bliokh, F. J. Rodríguez-Fortuño, F. Nori, and A. V. Zayats, “Spin-orbit interactions of light,” Nat. Photonics 9, 796–808 (2015).
[Crossref]

K. Andrzejewski, A. Kijanka-Dec, P. Kosiński, and P. Maślanka, “Chiral fermions, massless particles and Poincare covariance,” Phys. Lett. B 746, 417–423 (2015).
[Crossref]

C. Duval and P. A. Horváthy, “Chiral fermions as classical massless spinning particles,” Phys. Rev. D 91, 045013 (2015).
[Crossref]

2014 (1)

Q. Xu, L. Chen, M. G. Wood, P. Sun, and R. M. Reano, “Electrically tunable optical polarization rotation on a silicon chip using Berry’s phase,” Nat. Commun. 5, 5337 (2014).
[Crossref]

2013 (5)

K. Bliokh and A. Aiello, “Goos-Hänchen and Imbert-Fedorov beam shifts: an overview,” J. Opt. 15, 014001 (2013).
[Crossref]

Y. Vasylkiv, I. Skab, and R. Vlokh, “Efficiency of spin-to-orbit conversion in crystals subjected to torsion stresses,” Ukr. J. Phys. Opt. 14, 50–56 (2013).
[Crossref]

X. Zhou, J. Zhang, X. Ling, S. Chen, H. Luo, and S. Wen, “Photonic spin Hall effect in topological insulators,” Phys. Rev. A 88, 53840 (2013).
[Crossref]

E. Bibikova and N. Kundikova, “Properties of an adjustable quarter-wave system under conditions of multiple beam interference,” Appl. Optics 52, 1852–1856 (2013).
[Crossref]

S. Liu, M. Wang, P. Li, P. Zhang, and J. Zhao, “Abrupt polarization transition of vector autofocusing Airy beams,” Opt. Lett. 38, 2416–2418 (2013).
[Crossref] [PubMed]

2012 (5)

M. R. Dennis and J. B. Götte, “Topological aberration of optical vortex beams: determining dielectric interfaces by optical singularity shifts,” Phys. Rev. Lett. 109, 183903 (2012).
[Crossref] [PubMed]

H. Kobayashi, K. Nonaka, and M. Kitano, “Helical mode conversion using conical reflector,” Opt. Express 20, 14064–14074 (2012).
[Crossref] [PubMed]

X. Zhou, Z. Xiao, H. Luo, and S. Wen, “Experimental observation of the spin Hall effect of light on a nanometal film via weak measurements,” Phys. Rev. A 85, 043809 (2012).
[Crossref]

X. Zhou, X. Ling, H. Luo, and S. Wen, “Identifying graphene layers via spin Hall effect of light,” Appl. Phys. Lett. 101, 251602 (2012).
[Crossref]

Y. Jin, Z. Wang, Y. Lv, H. Liu, R. Liu, P. Zhang, H. Li, H. Gao, and F. Li, “Variation of polarization distribution of reflected beam caused by spin separation,” Opt. Express 20, 1975–1980 (2012).
[Crossref] [PubMed]

2011 (4)

2010 (3)

L. T. Vuong, A. J. L. Adam, J. M. Brok, P. C. M. Planken, and H. P. Urbach, “Electromagnetic spin-orbit interactions via scattering of subwavelength apertures,” Phys. Rev. Lett. 104, 083903 (2010).
[Crossref] [PubMed]

M. Merano, N. Hermosa, J. P. Woerdman, and A. Aiello, “How orbital angular momentum affects beam shifts in optical reflection,” Phys.Rev. A 82, 023817 (2010).

S. Slussarenko, V. D’Ambrosio, B. Piccirillo, L. Marrucci, and E. Santamato, “The polarizing Sagnac interferometer: a tool for light orbital angular momentum sorting and spin-orbit photon processing,” Opt. Express 18, 27205–27216 (2010).
[Crossref]

2009 (2)

2008 (2)

K. Bliokh, A. Niv, V. Kleiner, and E. Hasman, “Geometrodynamics of spinning light,” Nat. Photonics 2, 748–753 (2008).
[Crossref]

O. Hosten and P. Kwiat, “Observation of the spin Hall effect of light via weak measurements,” Science 319, 787–790 (2008).
[Crossref] [PubMed]

2007 (3)

Y. Zhao, J. S. Edgar, G. D. M. Jeffries, D. McGloin, and D. T. Chiu, “Spin-to-orbital angular momentum conversion in a strongly focused optical beam,” Phys. Rev. Lett. 99, 073901 (2007).
[Crossref] [PubMed]

C. Duval, Z. Horváth, and P. Horváthy, “Geometrical spinoptics and the optical Hall effect,” J. Geom. Phys. 57, 925–941 (2007).
[Crossref]

K. N. Alekseyev and M. A. Yavorsky, “Propagation of optical vortices in coiled weakly guiding optical fibers,” Opt. Spectrosc. 102, 754–759 (2007).
[Crossref]

2006 (5)

S. Asselborn, N. Kundikova, and I. Novikov, “A method of measurement of polarized light ellipticity only,” Proc. SPIE 6024, 60240D (2006).
[Crossref]

A. Bérard and H. Mohrbach, “Spin Hall effect and Berry phase of spinning particles,” Phys. Lett. A 352, 190–195 (2006).
[Crossref]

K. Bliokh, “Geometrical optics of beams with vortices: Berry phase and orbital angular momentum Hall effect,” Phys. Rev. Lett. 97, 043901 (2006).
[Crossref] [PubMed]

L. Marrucci, C. Manzo, and D. Paparo, “Optical spin-to-orbital angular momentum conversion in inhomogeneous anisotropic media,” Phys. Rev. Lett. 96, 163905 (2006).
[Crossref] [PubMed]

K. Bliokh and Y. Bliokh, “Conservation of angular momentum, transverse shift, and spin Hall effect in reflection and refraction of an electromagnetic wave packet,” Phys. Rev. Lett. 96, 073903 (2006).
[Crossref] [PubMed]

2004 (2)

K. Bliokh and Y. Bliokh, “Topological spin transport of photons: the optical Magnus effect and Berry phase,” Phys. Lett. A 333, 181–186 (2004).
[Crossref]

M. Onoda, S. Murakami, and N. Nagaosa, “Hall effect of light,” Phys. Rev. Lett. 93, 083901 (2004).
[Crossref] [PubMed]

2003 (1)

M. Darscht, B. Zel’dovich, R. Kowarschik, and N. Kundikova, “Image rotation in a multimode fiber under the change a sign of circular polarization,” Proc. Chel. Sci. Center 2, 10–14 (2003).

2001 (1)

V. Fedoseyev, “Spin-independent transverse shift of the centre of gravity of a reflected and of a refracted light beam,” Opt. Commun. 193, 9–18 (2001).
[Crossref]

1996 (1)

B. Y. Zel’dovich, I. V. Kataevskaya, and N. Kundikova, “Inhomogeneity of the optical Magnus effect,” Quantum Electron. 26, 87–88 (1996).
[Crossref]

1995 (4)

I. V. Kataevskaya and N. D. Kundikova, “Influence of the helical shape of a fibre waveguide on the propagation of light,” Quantum Electron. 25, 927–928 (1995).
[Crossref]

N. D. Kundikova, F. V. Podgornov, L. F. Rogacheva, and B. Y. Zel’dovich, “Manifestation of spin-orbit interaction of a photon in a vacuum,” Pure Appl. Opt. A 4, 179–183 (1995).
[Crossref]

B. Y. Zel’dovich and N. D. Kundikova, “Intrafibre rotation of the plane of polarisation,” Quantum Electron. 25, 172–174 (1995).
[Crossref]

M. Y. Darsht, B. Y. Zel’dovich, I. V. Kataevskaya, and N. D. Kundikova, “Formation of an isolated wavefront dislocation,” J. Exp. Theor. Phys. 80, 817–821 (1995).

1994 (3)

N. B. Baranova, A. Y. Savchenko, and B. Y. Zel’dovich, “Transverse shift of a focal spot due to switching of the sign of circular polarization,” J. Exp. Theor. Phys. Lett. 59, 232–234 (1994).

B. Zel’dovich, N. Kundikova, and L. Rogacheva, “Observed transverse shift of a focal spot upon a change in the sign of circular polarization,” J. Exp. Theor. Phys. Lett. 59, 766–769 (1994).

N. D. Kundikova, B. Y. Zel’dovich, I. V. Zhirgalova, and V. A. Goloveshkin, “The effects of spin-orbit interaction of a photon and their analogues in mechanics,” Pure Appl. Opt. A 3, 815–819 (1994).
[Crossref]

1993 (1)

V. S. Liberman and B. Y. Zel’dovich, “Spin-orbit polarization effects in isotropic multimode fibres,” Pure Appl. Opt. A 2, 367–382 (1993).
[Crossref]

1992 (2)

A. V. Dooghin, N. D. Kundikova, V. S. Liberman, and B. Y. Zeldovich, “Optical Magnus effect,” Phys. Rev. A 45, 8204–8208 (1992).
[Crossref] [PubMed]

V. Liberman and B. Zel’dovich, “Spin-orbit interaction of a photon in an inhomogeneous medium,” Phys. Rev. A 46, 5199–5207 (1992).
[Crossref] [PubMed]

1991 (1)

A. Dugin, B. Zel’dovich, N. Kundikova, and V. Liberman, “Effect of circular polarization on the propagation of light through an optical fiber,” J. Exp. Theor. Phys. Lett. 53, 197–199 (1991).

1987 (1)

M. V. Berry, “Interpreting the anholonomy of coiled light,” Nature 326, 277–278 (1987).
[Crossref]

1986 (2)

A. Tomita and R. Chiao, “Observation of Berry’s topological phase by use of an optical fiber,” Phys. Rev. Lett. 57, 937–940 (1986).
[Crossref] [PubMed]

R. Chiao and Y.-S. Wu, “Manifestations of Berry’s topological phase for the photon,” Phys. Rev. Lett. 57, 933–936 (1986).
[Crossref] [PubMed]

1984 (1)

M. Cronin-Golomb, B. Fischer, J. White, and A. Yariv, “Theory and applications of four-wave mixing in photorefractive media,” IEEE J. Quantum Elect. 20, 12–30 (1984).
[Crossref]

1970 (1)

C. Imbert, “Experimental proof of the photon’s translational inertial spin effect,” Phys. Lett. A 31, 337–338 (1970).
[Crossref]

1955 (1)

F. I. Fedorov, “On the theory of total internal reflection,” Dokl. Akad. Nauk SSSR 105(5), 465–469 (1955).

1941 (1)

V. Vladimirskii, “The rotation of a polarization plane for curved light ray,” Dokl. Akad. Nauk SSSR 21, 222–225 (1941).

1938 (1)

S. Rytov, “On transition from wave to geometrical optics,” Dokl. Akad. Nauk SSSR 18, 263–266 (1938).

1936 (1)

R. A. Beth, “Mechanical detection and measurement of the angular momentum of light,” Phys. Rev. 50, 115–125 (1936).
[Crossref]

Adam, A. J. L.

L. T. Vuong, A. J. L. Adam, J. M. Brok, P. C. M. Planken, and H. P. Urbach, “Electromagnetic spin-orbit interactions via scattering of subwavelength apertures,” Phys. Rev. Lett. 104, 083903 (2010).
[Crossref] [PubMed]

Aiello, A.

K. Bliokh and A. Aiello, “Goos-Hänchen and Imbert-Fedorov beam shifts: an overview,” J. Opt. 15, 014001 (2013).
[Crossref]

M. Merano, N. Hermosa, J. P. Woerdman, and A. Aiello, “How orbital angular momentum affects beam shifts in optical reflection,” Phys.Rev. A 82, 023817 (2010).

Alekseyev, K. N.

K. N. Alekseyev and M. A. Yavorsky, “Propagation of optical vortices in coiled weakly guiding optical fibers,” Opt. Spectrosc. 102, 754–759 (2007).
[Crossref]

Allen, L.

L. Allen, S. M. Barnett, and M. J. Padgett, Optical Angular Momentum (Institute of Physics Publishing, 2003).
[Crossref]

Alonso, M. A.

Andrzejewski, K.

K. Andrzejewski, A. Kijanka-Dec, P. Kosiński, and P. Maślanka, “Chiral fermions, massless particles and Poincare covariance,” Phys. Lett. B 746, 417–423 (2015).
[Crossref]

Asselborn, S.

S. Asselborn, N. Kundikova, and I. Novikov, “A method of measurement of polarized light ellipticity only,” Proc. SPIE 6024, 60240D (2006).
[Crossref]

Baranova, N. B.

N. B. Baranova, A. Y. Savchenko, and B. Y. Zel’dovich, “Transverse shift of a focal spot due to switching of the sign of circular polarization,” J. Exp. Theor. Phys. Lett. 59, 232–234 (1994).

Barnett, S. M.

L. Allen, S. M. Barnett, and M. J. Padgett, Optical Angular Momentum (Institute of Physics Publishing, 2003).
[Crossref]

Bekshaev, A.

A. Bekshaev, K. Y. Bliokh, and M. Soskin, “Internal flows and energy circulation in light beams,” J. Opt. 13, 53001 (2011).
[Crossref]

Bérard, A.

A. Bérard and H. Mohrbach, “Spin Hall effect and Berry phase of spinning particles,” Phys. Lett. A 352, 190–195 (2006).
[Crossref]

Berry, M. V.

M. V. Berry, “Interpreting the anholonomy of coiled light,” Nature 326, 277–278 (1987).
[Crossref]

Beth, R. A.

R. A. Beth, “Mechanical detection and measurement of the angular momentum of light,” Phys. Rev. 50, 115–125 (1936).
[Crossref]

Betz, M.

Bibikova, E.

E. Bibikova and N. Kundikova, “Properties of an adjustable quarter-wave system under conditions of multiple beam interference,” Appl. Optics 52, 1852–1856 (2013).
[Crossref]

Bliokh, K.

K. Bliokh and A. Aiello, “Goos-Hänchen and Imbert-Fedorov beam shifts: an overview,” J. Opt. 15, 014001 (2013).
[Crossref]

K. Bliokh, E. A. Ostrovskaya, M. A. Alonso, O. G. Rodríguez-Herrera, D. Lara, and C. Dainty, “Spin-to-orbital angular momentum conversion in focusing, scattering, and imaging systems,” Opt. Express 19, 26132–26149 (2011).
[Crossref]

K. Bliokh, I. V. Shadrivov, and Y. S. Kivshar, “Goos-Hänchen and Imbert-Fedorov shifts of polarized vortex beams,” Opt. Lett. 34, 389–391 (2009).
[Crossref] [PubMed]

K. Bliokh, A. Niv, V. Kleiner, and E. Hasman, “Geometrodynamics of spinning light,” Nat. Photonics 2, 748–753 (2008).
[Crossref]

K. Bliokh, “Geometrical optics of beams with vortices: Berry phase and orbital angular momentum Hall effect,” Phys. Rev. Lett. 97, 043901 (2006).
[Crossref] [PubMed]

K. Bliokh and Y. Bliokh, “Conservation of angular momentum, transverse shift, and spin Hall effect in reflection and refraction of an electromagnetic wave packet,” Phys. Rev. Lett. 96, 073903 (2006).
[Crossref] [PubMed]

K. Bliokh and Y. Bliokh, “Topological spin transport of photons: the optical Magnus effect and Berry phase,” Phys. Lett. A 333, 181–186 (2004).
[Crossref]

Bliokh, K. Y.

K. Y. Bliokh, F. J. Rodríguez-Fortuño, F. Nori, and A. V. Zayats, “Spin-orbit interactions of light,” Nat. Photonics 9, 796–808 (2015).
[Crossref]

A. Bekshaev, K. Y. Bliokh, and M. Soskin, “Internal flows and energy circulation in light beams,” J. Opt. 13, 53001 (2011).
[Crossref]

Bliokh, Y.

K. Bliokh and Y. Bliokh, “Conservation of angular momentum, transverse shift, and spin Hall effect in reflection and refraction of an electromagnetic wave packet,” Phys. Rev. Lett. 96, 073903 (2006).
[Crossref] [PubMed]

K. Bliokh and Y. Bliokh, “Topological spin transport of photons: the optical Magnus effect and Berry phase,” Phys. Lett. A 333, 181–186 (2004).
[Crossref]

Bolshakov, M.

M. Bolshakov, N. Kundikova, and I. Popkov, “Optical method for investigation of the parameters of the thin film,” Progress in Electromagnetics Research Symposium 2015-Janua, 2042–2045 (2015).

Bolshakov, M. V.

M. V. Bolshakov, N. D. Kundikova, and M. A. Vlazneva, “Modal power decomposition of light propagating through multimode optical fiber,” Opt. Commun. 365, 1–6 (2016).
[Crossref]

M. V. Bolshakov, A. V. Guseva, N. D. Kundikova, and E. S. Samkova, “Polarized light propagation along a helical trajectory,” Proc. SPIE 8011, 80114Q (2011).
[Crossref]

Brok, J. M.

L. T. Vuong, A. J. L. Adam, J. M. Brok, P. C. M. Planken, and H. P. Urbach, “Electromagnetic spin-orbit interactions via scattering of subwavelength apertures,” Phys. Rev. Lett. 104, 083903 (2010).
[Crossref] [PubMed]

Chang, R.

Chen, L.

Q. Xu, L. Chen, M. G. Wood, P. Sun, and R. M. Reano, “Electrically tunable optical polarization rotation on a silicon chip using Berry’s phase,” Nat. Commun. 5, 5337 (2014).
[Crossref]

Chen, S.

X. Zhou, J. Zhang, X. Ling, S. Chen, H. Luo, and S. Wen, “Photonic spin Hall effect in topological insulators,” Phys. Rev. A 88, 53840 (2013).
[Crossref]

Chiao, R.

R. Chiao and Y.-S. Wu, “Manifestations of Berry’s topological phase for the photon,” Phys. Rev. Lett. 57, 933–936 (1986).
[Crossref] [PubMed]

A. Tomita and R. Chiao, “Observation of Berry’s topological phase by use of an optical fiber,” Phys. Rev. Lett. 57, 937–940 (1986).
[Crossref] [PubMed]

Chigrinov, V.

Chiu, D. T.

Y. Zhao, J. S. Edgar, G. D. M. Jeffries, D. McGloin, and D. T. Chiu, “Spin-to-orbital angular momentum conversion in a strongly focused optical beam,” Phys. Rev. Lett. 99, 073901 (2007).
[Crossref] [PubMed]

Cronin-Golomb, M.

M. Cronin-Golomb, B. Fischer, J. White, and A. Yariv, “Theory and applications of four-wave mixing in photorefractive media,” IEEE J. Quantum Elect. 20, 12–30 (1984).
[Crossref]

D’Ambrosio, V.

Dainty, C.

Darscht, M.

M. Darscht, B. Zel’dovich, R. Kowarschik, and N. Kundikova, “Image rotation in a multimode fiber under the change a sign of circular polarization,” Proc. Chel. Sci. Center 2, 10–14 (2003).

Darsht, M. Y.

M. Y. Darsht, B. Y. Zel’dovich, I. V. Kataevskaya, and N. D. Kundikova, “Formation of an isolated wavefront dislocation,” J. Exp. Theor. Phys. 80, 817–821 (1995).

Dennis, M. R.

M. R. Dennis and J. B. Götte, “Topological aberration of optical vortex beams: determining dielectric interfaces by optical singularity shifts,” Phys. Rev. Lett. 109, 183903 (2012).
[Crossref] [PubMed]

Dooghin, A. V.

A. V. Dooghin, N. D. Kundikova, V. S. Liberman, and B. Y. Zeldovich, “Optical Magnus effect,” Phys. Rev. A 45, 8204–8208 (1992).
[Crossref] [PubMed]

Du, T.

Dugin, A.

A. Dugin, B. Zel’dovich, N. Kundikova, and V. Liberman, “Effect of circular polarization on the propagation of light through an optical fiber,” J. Exp. Theor. Phys. Lett. 53, 197–199 (1991).

Duval, C.

C. Duval and P. A. Horváthy, “Chiral fermions as classical massless spinning particles,” Phys. Rev. D 91, 045013 (2015).
[Crossref]

C. Duval, Z. Horváth, and P. Horváthy, “Geometrical spinoptics and the optical Hall effect,” J. Geom. Phys. 57, 925–941 (2007).
[Crossref]

Edgar, J. S.

Y. Zhao, J. S. Edgar, G. D. M. Jeffries, D. McGloin, and D. T. Chiu, “Spin-to-orbital angular momentum conversion in a strongly focused optical beam,” Phys. Rev. Lett. 99, 073901 (2007).
[Crossref] [PubMed]

Fedorov, F. I.

F. I. Fedorov, “On the theory of total internal reflection,” Dokl. Akad. Nauk SSSR 105(5), 465–469 (1955).

Fedoseyev, V.

V. Fedoseyev, “Spin-independent transverse shift of the centre of gravity of a reflected and of a refracted light beam,” Opt. Commun. 193, 9–18 (2001).
[Crossref]

Fischer, B.

M. Cronin-Golomb, B. Fischer, J. White, and A. Yariv, “Theory and applications of four-wave mixing in photorefractive media,” IEEE J. Quantum Elect. 20, 12–30 (1984).
[Crossref]

Gao, H.

Goloveshkin, V. A.

N. D. Kundikova, B. Y. Zel’dovich, I. V. Zhirgalova, and V. A. Goloveshkin, “The effects of spin-orbit interaction of a photon and their analogues in mechanics,” Pure Appl. Opt. A 3, 815–819 (1994).
[Crossref]

Götte, J. B.

M. R. Dennis and J. B. Götte, “Topological aberration of optical vortex beams: determining dielectric interfaces by optical singularity shifts,” Phys. Rev. Lett. 109, 183903 (2012).
[Crossref] [PubMed]

Guseva, A. V.

M. V. Bolshakov, A. V. Guseva, N. D. Kundikova, and E. S. Samkova, “Polarized light propagation along a helical trajectory,” Proc. SPIE 8011, 80114Q (2011).
[Crossref]

Hasman, E.

K. Bliokh, A. Niv, V. Kleiner, and E. Hasman, “Geometrodynamics of spinning light,” Nat. Photonics 2, 748–753 (2008).
[Crossref]

Hermosa, N.

M. Merano, N. Hermosa, J. P. Woerdman, and A. Aiello, “How orbital angular momentum affects beam shifts in optical reflection,” Phys.Rev. A 82, 023817 (2010).

Horváth, Z.

C. Duval, Z. Horváth, and P. Horváthy, “Geometrical spinoptics and the optical Hall effect,” J. Geom. Phys. 57, 925–941 (2007).
[Crossref]

Horváthy, P.

C. Duval, Z. Horváth, and P. Horváthy, “Geometrical spinoptics and the optical Hall effect,” J. Geom. Phys. 57, 925–941 (2007).
[Crossref]

Horváthy, P. A.

C. Duval and P. A. Horváthy, “Chiral fermions as classical massless spinning particles,” Phys. Rev. D 91, 045013 (2015).
[Crossref]

Hosten, O.

O. Hosten and P. Kwiat, “Observation of the spin Hall effect of light via weak measurements,” Science 319, 787–790 (2008).
[Crossref] [PubMed]

Imbert, C.

C. Imbert, “Experimental proof of the photon’s translational inertial spin effect,” Phys. Lett. A 31, 337–338 (1970).
[Crossref]

Jeffries, G. D. M.

Y. Zhao, J. S. Edgar, G. D. M. Jeffries, D. McGloin, and D. T. Chiu, “Spin-to-orbital angular momentum conversion in a strongly focused optical beam,” Phys. Rev. Lett. 99, 073901 (2007).
[Crossref] [PubMed]

Jin, Y.

Kataevskaya, I. V.

B. Y. Zel’dovich, I. V. Kataevskaya, and N. Kundikova, “Inhomogeneity of the optical Magnus effect,” Quantum Electron. 26, 87–88 (1996).
[Crossref]

M. Y. Darsht, B. Y. Zel’dovich, I. V. Kataevskaya, and N. D. Kundikova, “Formation of an isolated wavefront dislocation,” J. Exp. Theor. Phys. 80, 817–821 (1995).

I. V. Kataevskaya and N. D. Kundikova, “Influence of the helical shape of a fibre waveguide on the propagation of light,” Quantum Electron. 25, 927–928 (1995).
[Crossref]

Kijanka-Dec, A.

K. Andrzejewski, A. Kijanka-Dec, P. Kosiński, and P. Maślanka, “Chiral fermions, massless particles and Poincare covariance,” Phys. Lett. B 746, 417–423 (2015).
[Crossref]

Kitano, M.

Kivshar, Y. S.

Kleiner, V.

K. Bliokh, A. Niv, V. Kleiner, and E. Hasman, “Geometrodynamics of spinning light,” Nat. Photonics 2, 748–753 (2008).
[Crossref]

Kobayashi, H.

Kosinski, P.

K. Andrzejewski, A. Kijanka-Dec, P. Kosiński, and P. Maślanka, “Chiral fermions, massless particles and Poincare covariance,” Phys. Lett. B 746, 417–423 (2015).
[Crossref]

Kowarschik, R.

M. Darscht, B. Zel’dovich, R. Kowarschik, and N. Kundikova, “Image rotation in a multimode fiber under the change a sign of circular polarization,” Proc. Chel. Sci. Center 2, 10–14 (2003).

Kretzschmar, I.

Kundikova, N.

E. Bibikova and N. Kundikova, “Properties of an adjustable quarter-wave system under conditions of multiple beam interference,” Appl. Optics 52, 1852–1856 (2013).
[Crossref]

S. Asselborn, N. Kundikova, and I. Novikov, “A method of measurement of polarized light ellipticity only,” Proc. SPIE 6024, 60240D (2006).
[Crossref]

M. Darscht, B. Zel’dovich, R. Kowarschik, and N. Kundikova, “Image rotation in a multimode fiber under the change a sign of circular polarization,” Proc. Chel. Sci. Center 2, 10–14 (2003).

B. Y. Zel’dovich, I. V. Kataevskaya, and N. Kundikova, “Inhomogeneity of the optical Magnus effect,” Quantum Electron. 26, 87–88 (1996).
[Crossref]

B. Zel’dovich, N. Kundikova, and L. Rogacheva, “Observed transverse shift of a focal spot upon a change in the sign of circular polarization,” J. Exp. Theor. Phys. Lett. 59, 766–769 (1994).

A. Dugin, B. Zel’dovich, N. Kundikova, and V. Liberman, “Effect of circular polarization on the propagation of light through an optical fiber,” J. Exp. Theor. Phys. Lett. 53, 197–199 (1991).

M. Bolshakov, N. Kundikova, and I. Popkov, “Optical method for investigation of the parameters of the thin film,” Progress in Electromagnetics Research Symposium 2015-Janua, 2042–2045 (2015).

Kundikova, N. D.

M. V. Bolshakov, N. D. Kundikova, and M. A. Vlazneva, “Modal power decomposition of light propagating through multimode optical fiber,” Opt. Commun. 365, 1–6 (2016).
[Crossref]

M. V. Bolshakov, A. V. Guseva, N. D. Kundikova, and E. S. Samkova, “Polarized light propagation along a helical trajectory,” Proc. SPIE 8011, 80114Q (2011).
[Crossref]

I. V. Kataevskaya and N. D. Kundikova, “Influence of the helical shape of a fibre waveguide on the propagation of light,” Quantum Electron. 25, 927–928 (1995).
[Crossref]

N. D. Kundikova, F. V. Podgornov, L. F. Rogacheva, and B. Y. Zel’dovich, “Manifestation of spin-orbit interaction of a photon in a vacuum,” Pure Appl. Opt. A 4, 179–183 (1995).
[Crossref]

M. Y. Darsht, B. Y. Zel’dovich, I. V. Kataevskaya, and N. D. Kundikova, “Formation of an isolated wavefront dislocation,” J. Exp. Theor. Phys. 80, 817–821 (1995).

B. Y. Zel’dovich and N. D. Kundikova, “Intrafibre rotation of the plane of polarisation,” Quantum Electron. 25, 172–174 (1995).
[Crossref]

N. D. Kundikova, B. Y. Zel’dovich, I. V. Zhirgalova, and V. A. Goloveshkin, “The effects of spin-orbit interaction of a photon and their analogues in mechanics,” Pure Appl. Opt. A 3, 815–819 (1994).
[Crossref]

A. V. Dooghin, N. D. Kundikova, V. S. Liberman, and B. Y. Zeldovich, “Optical Magnus effect,” Phys. Rev. A 45, 8204–8208 (1992).
[Crossref] [PubMed]

Kwiat, P.

O. Hosten and P. Kwiat, “Observation of the spin Hall effect of light via weak measurements,” Science 319, 787–790 (2008).
[Crossref] [PubMed]

Lara, D.

Li, F.

Li, H.

Li, P.

Liberman, V.

V. Liberman and B. Zel’dovich, “Spin-orbit interaction of a photon in an inhomogeneous medium,” Phys. Rev. A 46, 5199–5207 (1992).
[Crossref] [PubMed]

A. Dugin, B. Zel’dovich, N. Kundikova, and V. Liberman, “Effect of circular polarization on the propagation of light through an optical fiber,” J. Exp. Theor. Phys. Lett. 53, 197–199 (1991).

Liberman, V. S.

V. S. Liberman and B. Y. Zel’dovich, “Spin-orbit polarization effects in isotropic multimode fibres,” Pure Appl. Opt. A 2, 367–382 (1993).
[Crossref]

A. V. Dooghin, N. D. Kundikova, V. S. Liberman, and B. Y. Zeldovich, “Optical Magnus effect,” Phys. Rev. A 45, 8204–8208 (1992).
[Crossref] [PubMed]

Ling, X.

X. Zhou, J. Zhang, X. Ling, S. Chen, H. Luo, and S. Wen, “Photonic spin Hall effect in topological insulators,” Phys. Rev. A 88, 53840 (2013).
[Crossref]

X. Zhou, X. Ling, H. Luo, and S. Wen, “Identifying graphene layers via spin Hall effect of light,” Appl. Phys. Lett. 101, 251602 (2012).
[Crossref]

Liu, H.

Liu, R.

Liu, S.

Love, J. D.

A. W. Snyder and J. D. Love, Optical Waveguide Theory (Chapman and Hall, 2012).

Luo, H.

X. Zhou, J. Zhang, X. Ling, S. Chen, H. Luo, and S. Wen, “Photonic spin Hall effect in topological insulators,” Phys. Rev. A 88, 53840 (2013).
[Crossref]

X. Zhou, X. Ling, H. Luo, and S. Wen, “Identifying graphene layers via spin Hall effect of light,” Appl. Phys. Lett. 101, 251602 (2012).
[Crossref]

X. Zhou, Z. Xiao, H. Luo, and S. Wen, “Experimental observation of the spin Hall effect of light on a nanometal film via weak measurements,” Phys. Rev. A 85, 043809 (2012).
[Crossref]

Lv, Y.

Manzo, C.

L. Marrucci, C. Manzo, and D. Paparo, “Optical spin-to-orbital angular momentum conversion in inhomogeneous anisotropic media,” Phys. Rev. Lett. 96, 163905 (2006).
[Crossref] [PubMed]

Marrucci, L.

Maslanka, P.

K. Andrzejewski, A. Kijanka-Dec, P. Kosiński, and P. Maślanka, “Chiral fermions, massless particles and Poincare covariance,” Phys. Lett. B 746, 417–423 (2015).
[Crossref]

Mattacchione, A. E.

McGloin, D.

Y. Zhao, J. S. Edgar, G. D. M. Jeffries, D. McGloin, and D. T. Chiu, “Spin-to-orbital angular momentum conversion in a strongly focused optical beam,” Phys. Rev. Lett. 99, 073901 (2007).
[Crossref] [PubMed]

Ménard, J.-M.

Menon, V. M.

Merano, M.

M. Merano, N. Hermosa, J. P. Woerdman, and A. Aiello, “How orbital angular momentum affects beam shifts in optical reflection,” Phys.Rev. A 82, 023817 (2010).

Mohrbach, H.

A. Bérard and H. Mohrbach, “Spin Hall effect and Berry phase of spinning particles,” Phys. Lett. A 352, 190–195 (2006).
[Crossref]

Moocarme, M.

Murakami, S.

M. Onoda, S. Murakami, and N. Nagaosa, “Hall effect of light,” Phys. Rev. Lett. 93, 083901 (2004).
[Crossref] [PubMed]

Murauski, A.

Nagaosa, N.

M. Onoda, S. Murakami, and N. Nagaosa, “Hall effect of light,” Phys. Rev. Lett. 93, 083901 (2004).
[Crossref] [PubMed]

Niv, A.

K. Bliokh, A. Niv, V. Kleiner, and E. Hasman, “Geometrodynamics of spinning light,” Nat. Photonics 2, 748–753 (2008).
[Crossref]

Nonaka, K.

Nori, F.

K. Y. Bliokh, F. J. Rodríguez-Fortuño, F. Nori, and A. V. Zayats, “Spin-orbit interactions of light,” Nat. Photonics 9, 796–808 (2015).
[Crossref]

Novikov, I.

S. Asselborn, N. Kundikova, and I. Novikov, “A method of measurement of polarized light ellipticity only,” Proc. SPIE 6024, 60240D (2006).
[Crossref]

Onoda, M.

M. Onoda, S. Murakami, and N. Nagaosa, “Hall effect of light,” Phys. Rev. Lett. 93, 083901 (2004).
[Crossref] [PubMed]

Ostrovskaya, E. A.

Padgett, M. J.

L. Allen, S. M. Barnett, and M. J. Padgett, Optical Angular Momentum (Institute of Physics Publishing, 2003).
[Crossref]

Paparo, D.

L. Marrucci, C. Manzo, and D. Paparo, “Optical spin-to-orbital angular momentum conversion in inhomogeneous anisotropic media,” Phys. Rev. Lett. 96, 163905 (2006).
[Crossref] [PubMed]

Piccirillo, B.

Planken, P. C. M.

L. T. Vuong, A. J. L. Adam, J. M. Brok, P. C. M. Planken, and H. P. Urbach, “Electromagnetic spin-orbit interactions via scattering of subwavelength apertures,” Phys. Rev. Lett. 104, 083903 (2010).
[Crossref] [PubMed]

Podgornov, F. V.

N. D. Kundikova, F. V. Podgornov, L. F. Rogacheva, and B. Y. Zel’dovich, “Manifestation of spin-orbit interaction of a photon in a vacuum,” Pure Appl. Opt. A 4, 179–183 (1995).
[Crossref]

Popkov, I.

M. Bolshakov, N. Kundikova, and I. Popkov, “Optical method for investigation of the parameters of the thin film,” Progress in Electromagnetics Research Symposium 2015-Janua, 2042–2045 (2015).

Proscia, N. V.

Reano, R. M.

Q. Xu, L. Chen, M. G. Wood, P. Sun, and R. M. Reano, “Electrically tunable optical polarization rotation on a silicon chip using Berry’s phase,” Nat. Commun. 5, 5337 (2014).
[Crossref]

Rodríguez-Fortuño, F. J.

K. Y. Bliokh, F. J. Rodríguez-Fortuño, F. Nori, and A. V. Zayats, “Spin-orbit interactions of light,” Nat. Photonics 9, 796–808 (2015).
[Crossref]

Rodríguez-Herrera, O. G.

Rogacheva, L.

B. Zel’dovich, N. Kundikova, and L. Rogacheva, “Observed transverse shift of a focal spot upon a change in the sign of circular polarization,” J. Exp. Theor. Phys. Lett. 59, 766–769 (1994).

Rogacheva, L. F.

N. D. Kundikova, F. V. Podgornov, L. F. Rogacheva, and B. Y. Zel’dovich, “Manifestation of spin-orbit interaction of a photon in a vacuum,” Pure Appl. Opt. A 4, 179–183 (1995).
[Crossref]

Rytov, S.

S. Rytov, “On transition from wave to geometrical optics,” Dokl. Akad. Nauk SSSR 18, 263–266 (1938).

Samkova, E. S.

M. V. Bolshakov, A. V. Guseva, N. D. Kundikova, and E. S. Samkova, “Polarized light propagation along a helical trajectory,” Proc. SPIE 8011, 80114Q (2011).
[Crossref]

Santamato, E.

Savchenko, A. Y.

N. B. Baranova, A. Y. Savchenko, and B. Y. Zel’dovich, “Transverse shift of a focal spot due to switching of the sign of circular polarization,” J. Exp. Theor. Phys. Lett. 59, 232–234 (1994).

Shadrivov, I. V.

Skab, I.

Y. Vasylkiv, I. Skab, and R. Vlokh, “Efficiency of spin-to-orbit conversion in crystals subjected to torsion stresses,” Ukr. J. Phys. Opt. 14, 50–56 (2013).
[Crossref]

Slussarenko, S.

Snyder, A. W.

A. W. Snyder and J. D. Love, Optical Waveguide Theory (Chapman and Hall, 2012).

Soskin, M.

A. Bekshaev, K. Y. Bliokh, and M. Soskin, “Internal flows and energy circulation in light beams,” J. Opt. 13, 53001 (2011).
[Crossref]

Sun, P.

Q. Xu, L. Chen, M. G. Wood, P. Sun, and R. M. Reano, “Electrically tunable optical polarization rotation on a silicon chip using Berry’s phase,” Nat. Commun. 5, 5337 (2014).
[Crossref]

Tomita, A.

A. Tomita and R. Chiao, “Observation of Berry’s topological phase by use of an optical fiber,” Phys. Rev. Lett. 57, 937–940 (1986).
[Crossref] [PubMed]

Urbach, H. P.

L. T. Vuong, A. J. L. Adam, J. M. Brok, P. C. M. Planken, and H. P. Urbach, “Electromagnetic spin-orbit interactions via scattering of subwavelength apertures,” Phys. Rev. Lett. 104, 083903 (2010).
[Crossref] [PubMed]

van Driel, H. M.

Vasylkiv, Y.

Y. Vasylkiv, I. Skab, and R. Vlokh, “Efficiency of spin-to-orbit conversion in crystals subjected to torsion stresses,” Ukr. J. Phys. Opt. 14, 50–56 (2013).
[Crossref]

Vladimirskii, V.

V. Vladimirskii, “The rotation of a polarization plane for curved light ray,” Dokl. Akad. Nauk SSSR 21, 222–225 (1941).

Vlazneva, M. A.

M. V. Bolshakov, N. D. Kundikova, and M. A. Vlazneva, “Modal power decomposition of light propagating through multimode optical fiber,” Opt. Commun. 365, 1–6 (2016).
[Crossref]

Vlokh, R.

Y. Vasylkiv, I. Skab, and R. Vlokh, “Efficiency of spin-to-orbit conversion in crystals subjected to torsion stresses,” Ukr. J. Phys. Opt. 14, 50–56 (2013).
[Crossref]

Vuong, L. T.

N. V. Proscia, M. Moocarme, R. Chang, I. Kretzschmar, V. M. Menon, and L. T. Vuong, “Control of photo-induced voltages in plasmonic crystals via spin-orbit interactions,” Opt. Express 24, 10402–10411 (2016).
[Crossref] [PubMed]

L. T. Vuong, A. J. L. Adam, J. M. Brok, P. C. M. Planken, and H. P. Urbach, “Electromagnetic spin-orbit interactions via scattering of subwavelength apertures,” Phys. Rev. Lett. 104, 083903 (2010).
[Crossref] [PubMed]

Wang, M.

Wang, Z.

Wen, S.

X. Zhou, J. Zhang, X. Ling, S. Chen, H. Luo, and S. Wen, “Photonic spin Hall effect in topological insulators,” Phys. Rev. A 88, 53840 (2013).
[Crossref]

X. Zhou, X. Ling, H. Luo, and S. Wen, “Identifying graphene layers via spin Hall effect of light,” Appl. Phys. Lett. 101, 251602 (2012).
[Crossref]

X. Zhou, Z. Xiao, H. Luo, and S. Wen, “Experimental observation of the spin Hall effect of light on a nanometal film via weak measurements,” Phys. Rev. A 85, 043809 (2012).
[Crossref]

White, J.

M. Cronin-Golomb, B. Fischer, J. White, and A. Yariv, “Theory and applications of four-wave mixing in photorefractive media,” IEEE J. Quantum Elect. 20, 12–30 (1984).
[Crossref]

Woerdman, J. P.

M. Merano, N. Hermosa, J. P. Woerdman, and A. Aiello, “How orbital angular momentum affects beam shifts in optical reflection,” Phys.Rev. A 82, 023817 (2010).

Wood, M. G.

Q. Xu, L. Chen, M. G. Wood, P. Sun, and R. M. Reano, “Electrically tunable optical polarization rotation on a silicon chip using Berry’s phase,” Nat. Commun. 5, 5337 (2014).
[Crossref]

Wu, Y.-S.

R. Chiao and Y.-S. Wu, “Manifestations of Berry’s topological phase for the photon,” Phys. Rev. Lett. 57, 933–936 (1986).
[Crossref] [PubMed]

Xiao, Z.

X. Zhou, Z. Xiao, H. Luo, and S. Wen, “Experimental observation of the spin Hall effect of light on a nanometal film via weak measurements,” Phys. Rev. A 85, 043809 (2012).
[Crossref]

Xu, Q.

Q. Xu, L. Chen, M. G. Wood, P. Sun, and R. M. Reano, “Electrically tunable optical polarization rotation on a silicon chip using Berry’s phase,” Nat. Commun. 5, 5337 (2014).
[Crossref]

Yariv, A.

M. Cronin-Golomb, B. Fischer, J. White, and A. Yariv, “Theory and applications of four-wave mixing in photorefractive media,” IEEE J. Quantum Elect. 20, 12–30 (1984).
[Crossref]

Yavorsky, M. A.

K. N. Alekseyev and M. A. Yavorsky, “Propagation of optical vortices in coiled weakly guiding optical fibers,” Opt. Spectrosc. 102, 754–759 (2007).
[Crossref]

Zayats, A. V.

K. Y. Bliokh, F. J. Rodríguez-Fortuño, F. Nori, and A. V. Zayats, “Spin-orbit interactions of light,” Nat. Photonics 9, 796–808 (2015).
[Crossref]

Zel’dovich, B.

M. Darscht, B. Zel’dovich, R. Kowarschik, and N. Kundikova, “Image rotation in a multimode fiber under the change a sign of circular polarization,” Proc. Chel. Sci. Center 2, 10–14 (2003).

B. Zel’dovich, N. Kundikova, and L. Rogacheva, “Observed transverse shift of a focal spot upon a change in the sign of circular polarization,” J. Exp. Theor. Phys. Lett. 59, 766–769 (1994).

V. Liberman and B. Zel’dovich, “Spin-orbit interaction of a photon in an inhomogeneous medium,” Phys. Rev. A 46, 5199–5207 (1992).
[Crossref] [PubMed]

A. Dugin, B. Zel’dovich, N. Kundikova, and V. Liberman, “Effect of circular polarization on the propagation of light through an optical fiber,” J. Exp. Theor. Phys. Lett. 53, 197–199 (1991).

Zel’dovich, B. Y.

B. Y. Zel’dovich, I. V. Kataevskaya, and N. Kundikova, “Inhomogeneity of the optical Magnus effect,” Quantum Electron. 26, 87–88 (1996).
[Crossref]

N. D. Kundikova, F. V. Podgornov, L. F. Rogacheva, and B. Y. Zel’dovich, “Manifestation of spin-orbit interaction of a photon in a vacuum,” Pure Appl. Opt. A 4, 179–183 (1995).
[Crossref]

B. Y. Zel’dovich and N. D. Kundikova, “Intrafibre rotation of the plane of polarisation,” Quantum Electron. 25, 172–174 (1995).
[Crossref]

M. Y. Darsht, B. Y. Zel’dovich, I. V. Kataevskaya, and N. D. Kundikova, “Formation of an isolated wavefront dislocation,” J. Exp. Theor. Phys. 80, 817–821 (1995).

N. D. Kundikova, B. Y. Zel’dovich, I. V. Zhirgalova, and V. A. Goloveshkin, “The effects of spin-orbit interaction of a photon and their analogues in mechanics,” Pure Appl. Opt. A 3, 815–819 (1994).
[Crossref]

N. B. Baranova, A. Y. Savchenko, and B. Y. Zel’dovich, “Transverse shift of a focal spot due to switching of the sign of circular polarization,” J. Exp. Theor. Phys. Lett. 59, 232–234 (1994).

V. S. Liberman and B. Y. Zel’dovich, “Spin-orbit polarization effects in isotropic multimode fibres,” Pure Appl. Opt. A 2, 367–382 (1993).
[Crossref]

Zeldovich, B. Y.

A. V. Dooghin, N. D. Kundikova, V. S. Liberman, and B. Y. Zeldovich, “Optical Magnus effect,” Phys. Rev. A 45, 8204–8208 (1992).
[Crossref] [PubMed]

Zhang, J.

X. Zhou, J. Zhang, X. Ling, S. Chen, H. Luo, and S. Wen, “Photonic spin Hall effect in topological insulators,” Phys. Rev. A 88, 53840 (2013).
[Crossref]

Zhang, P.

Zhao, J.

Zhao, Y.

Y. Zhao, J. S. Edgar, G. D. M. Jeffries, D. McGloin, and D. T. Chiu, “Spin-to-orbital angular momentum conversion in a strongly focused optical beam,” Phys. Rev. Lett. 99, 073901 (2007).
[Crossref] [PubMed]

Zhirgalova, I. V.

N. D. Kundikova, B. Y. Zel’dovich, I. V. Zhirgalova, and V. A. Goloveshkin, “The effects of spin-orbit interaction of a photon and their analogues in mechanics,” Pure Appl. Opt. A 3, 815–819 (1994).
[Crossref]

Zhou, X.

X. Zhou, J. Zhang, X. Ling, S. Chen, H. Luo, and S. Wen, “Photonic spin Hall effect in topological insulators,” Phys. Rev. A 88, 53840 (2013).
[Crossref]

X. Zhou, X. Ling, H. Luo, and S. Wen, “Identifying graphene layers via spin Hall effect of light,” Appl. Phys. Lett. 101, 251602 (2012).
[Crossref]

X. Zhou, Z. Xiao, H. Luo, and S. Wen, “Experimental observation of the spin Hall effect of light on a nanometal film via weak measurements,” Phys. Rev. A 85, 043809 (2012).
[Crossref]

Appl. Optics (1)

E. Bibikova and N. Kundikova, “Properties of an adjustable quarter-wave system under conditions of multiple beam interference,” Appl. Optics 52, 1852–1856 (2013).
[Crossref]

Appl. Phys. Lett. (1)

X. Zhou, X. Ling, H. Luo, and S. Wen, “Identifying graphene layers via spin Hall effect of light,” Appl. Phys. Lett. 101, 251602 (2012).
[Crossref]

Dokl. Akad. Nauk SSSR (3)

F. I. Fedorov, “On the theory of total internal reflection,” Dokl. Akad. Nauk SSSR 105(5), 465–469 (1955).

S. Rytov, “On transition from wave to geometrical optics,” Dokl. Akad. Nauk SSSR 18, 263–266 (1938).

V. Vladimirskii, “The rotation of a polarization plane for curved light ray,” Dokl. Akad. Nauk SSSR 21, 222–225 (1941).

IEEE J. Quantum Elect. (1)

M. Cronin-Golomb, B. Fischer, J. White, and A. Yariv, “Theory and applications of four-wave mixing in photorefractive media,” IEEE J. Quantum Elect. 20, 12–30 (1984).
[Crossref]

J. Exp. Theor. Phys. (1)

M. Y. Darsht, B. Y. Zel’dovich, I. V. Kataevskaya, and N. D. Kundikova, “Formation of an isolated wavefront dislocation,” J. Exp. Theor. Phys. 80, 817–821 (1995).

J. Exp. Theor. Phys. Lett. (3)

A. Dugin, B. Zel’dovich, N. Kundikova, and V. Liberman, “Effect of circular polarization on the propagation of light through an optical fiber,” J. Exp. Theor. Phys. Lett. 53, 197–199 (1991).

N. B. Baranova, A. Y. Savchenko, and B. Y. Zel’dovich, “Transverse shift of a focal spot due to switching of the sign of circular polarization,” J. Exp. Theor. Phys. Lett. 59, 232–234 (1994).

B. Zel’dovich, N. Kundikova, and L. Rogacheva, “Observed transverse shift of a focal spot upon a change in the sign of circular polarization,” J. Exp. Theor. Phys. Lett. 59, 766–769 (1994).

J. Geom. Phys. (1)

C. Duval, Z. Horváth, and P. Horváthy, “Geometrical spinoptics and the optical Hall effect,” J. Geom. Phys. 57, 925–941 (2007).
[Crossref]

J. Opt. (2)

A. Bekshaev, K. Y. Bliokh, and M. Soskin, “Internal flows and energy circulation in light beams,” J. Opt. 13, 53001 (2011).
[Crossref]

K. Bliokh and A. Aiello, “Goos-Hänchen and Imbert-Fedorov beam shifts: an overview,” J. Opt. 15, 014001 (2013).
[Crossref]

Nat. Commun. (1)

Q. Xu, L. Chen, M. G. Wood, P. Sun, and R. M. Reano, “Electrically tunable optical polarization rotation on a silicon chip using Berry’s phase,” Nat. Commun. 5, 5337 (2014).
[Crossref]

Nat. Photonics (2)

K. Y. Bliokh, F. J. Rodríguez-Fortuño, F. Nori, and A. V. Zayats, “Spin-orbit interactions of light,” Nat. Photonics 9, 796–808 (2015).
[Crossref]

K. Bliokh, A. Niv, V. Kleiner, and E. Hasman, “Geometrodynamics of spinning light,” Nat. Photonics 2, 748–753 (2008).
[Crossref]

Nature (1)

M. V. Berry, “Interpreting the anholonomy of coiled light,” Nature 326, 277–278 (1987).
[Crossref]

Opt. Commun. (2)

V. Fedoseyev, “Spin-independent transverse shift of the centre of gravity of a reflected and of a refracted light beam,” Opt. Commun. 193, 9–18 (2001).
[Crossref]

M. V. Bolshakov, N. D. Kundikova, and M. A. Vlazneva, “Modal power decomposition of light propagating through multimode optical fiber,” Opt. Commun. 365, 1–6 (2016).
[Crossref]

Opt. Express (6)

Opt. Lett. (3)

Opt. Spectrosc. (1)

K. N. Alekseyev and M. A. Yavorsky, “Propagation of optical vortices in coiled weakly guiding optical fibers,” Opt. Spectrosc. 102, 754–759 (2007).
[Crossref]

Phys. Lett. A (3)

A. Bérard and H. Mohrbach, “Spin Hall effect and Berry phase of spinning particles,” Phys. Lett. A 352, 190–195 (2006).
[Crossref]

K. Bliokh and Y. Bliokh, “Topological spin transport of photons: the optical Magnus effect and Berry phase,” Phys. Lett. A 333, 181–186 (2004).
[Crossref]

C. Imbert, “Experimental proof of the photon’s translational inertial spin effect,” Phys. Lett. A 31, 337–338 (1970).
[Crossref]

Phys. Lett. B (1)

K. Andrzejewski, A. Kijanka-Dec, P. Kosiński, and P. Maślanka, “Chiral fermions, massless particles and Poincare covariance,” Phys. Lett. B 746, 417–423 (2015).
[Crossref]

Phys. Rev. (1)

R. A. Beth, “Mechanical detection and measurement of the angular momentum of light,” Phys. Rev. 50, 115–125 (1936).
[Crossref]

Phys. Rev. A (4)

V. Liberman and B. Zel’dovich, “Spin-orbit interaction of a photon in an inhomogeneous medium,” Phys. Rev. A 46, 5199–5207 (1992).
[Crossref] [PubMed]

X. Zhou, Z. Xiao, H. Luo, and S. Wen, “Experimental observation of the spin Hall effect of light on a nanometal film via weak measurements,” Phys. Rev. A 85, 043809 (2012).
[Crossref]

X. Zhou, J. Zhang, X. Ling, S. Chen, H. Luo, and S. Wen, “Photonic spin Hall effect in topological insulators,” Phys. Rev. A 88, 53840 (2013).
[Crossref]

A. V. Dooghin, N. D. Kundikova, V. S. Liberman, and B. Y. Zeldovich, “Optical Magnus effect,” Phys. Rev. A 45, 8204–8208 (1992).
[Crossref] [PubMed]

Phys. Rev. D (1)

C. Duval and P. A. Horváthy, “Chiral fermions as classical massless spinning particles,” Phys. Rev. D 91, 045013 (2015).
[Crossref]

Phys. Rev. Lett. (9)

M. Onoda, S. Murakami, and N. Nagaosa, “Hall effect of light,” Phys. Rev. Lett. 93, 083901 (2004).
[Crossref] [PubMed]

K. Bliokh, “Geometrical optics of beams with vortices: Berry phase and orbital angular momentum Hall effect,” Phys. Rev. Lett. 97, 043901 (2006).
[Crossref] [PubMed]

Y. Zhao, J. S. Edgar, G. D. M. Jeffries, D. McGloin, and D. T. Chiu, “Spin-to-orbital angular momentum conversion in a strongly focused optical beam,” Phys. Rev. Lett. 99, 073901 (2007).
[Crossref] [PubMed]

L. Marrucci, C. Manzo, and D. Paparo, “Optical spin-to-orbital angular momentum conversion in inhomogeneous anisotropic media,” Phys. Rev. Lett. 96, 163905 (2006).
[Crossref] [PubMed]

K. Bliokh and Y. Bliokh, “Conservation of angular momentum, transverse shift, and spin Hall effect in reflection and refraction of an electromagnetic wave packet,” Phys. Rev. Lett. 96, 073903 (2006).
[Crossref] [PubMed]

L. T. Vuong, A. J. L. Adam, J. M. Brok, P. C. M. Planken, and H. P. Urbach, “Electromagnetic spin-orbit interactions via scattering of subwavelength apertures,” Phys. Rev. Lett. 104, 083903 (2010).
[Crossref] [PubMed]

A. Tomita and R. Chiao, “Observation of Berry’s topological phase by use of an optical fiber,” Phys. Rev. Lett. 57, 937–940 (1986).
[Crossref] [PubMed]

R. Chiao and Y.-S. Wu, “Manifestations of Berry’s topological phase for the photon,” Phys. Rev. Lett. 57, 933–936 (1986).
[Crossref] [PubMed]

M. R. Dennis and J. B. Götte, “Topological aberration of optical vortex beams: determining dielectric interfaces by optical singularity shifts,” Phys. Rev. Lett. 109, 183903 (2012).
[Crossref] [PubMed]

Phys.Rev. A (1)

M. Merano, N. Hermosa, J. P. Woerdman, and A. Aiello, “How orbital angular momentum affects beam shifts in optical reflection,” Phys.Rev. A 82, 023817 (2010).

Proc. Chel. Sci. Center (1)

M. Darscht, B. Zel’dovich, R. Kowarschik, and N. Kundikova, “Image rotation in a multimode fiber under the change a sign of circular polarization,” Proc. Chel. Sci. Center 2, 10–14 (2003).

Proc. SPIE (2)

S. Asselborn, N. Kundikova, and I. Novikov, “A method of measurement of polarized light ellipticity only,” Proc. SPIE 6024, 60240D (2006).
[Crossref]

M. V. Bolshakov, A. V. Guseva, N. D. Kundikova, and E. S. Samkova, “Polarized light propagation along a helical trajectory,” Proc. SPIE 8011, 80114Q (2011).
[Crossref]

Pure Appl. Opt. A (3)

N. D. Kundikova, F. V. Podgornov, L. F. Rogacheva, and B. Y. Zel’dovich, “Manifestation of spin-orbit interaction of a photon in a vacuum,” Pure Appl. Opt. A 4, 179–183 (1995).
[Crossref]

N. D. Kundikova, B. Y. Zel’dovich, I. V. Zhirgalova, and V. A. Goloveshkin, “The effects of spin-orbit interaction of a photon and their analogues in mechanics,” Pure Appl. Opt. A 3, 815–819 (1994).
[Crossref]

V. S. Liberman and B. Y. Zel’dovich, “Spin-orbit polarization effects in isotropic multimode fibres,” Pure Appl. Opt. A 2, 367–382 (1993).
[Crossref]

Quantum Electron. (3)

B. Y. Zel’dovich, I. V. Kataevskaya, and N. Kundikova, “Inhomogeneity of the optical Magnus effect,” Quantum Electron. 26, 87–88 (1996).
[Crossref]

B. Y. Zel’dovich and N. D. Kundikova, “Intrafibre rotation of the plane of polarisation,” Quantum Electron. 25, 172–174 (1995).
[Crossref]

I. V. Kataevskaya and N. D. Kundikova, “Influence of the helical shape of a fibre waveguide on the propagation of light,” Quantum Electron. 25, 927–928 (1995).
[Crossref]

Science (1)

O. Hosten and P. Kwiat, “Observation of the spin Hall effect of light via weak measurements,” Science 319, 787–790 (2008).
[Crossref] [PubMed]

Ukr. J. Phys. Opt. (1)

Y. Vasylkiv, I. Skab, and R. Vlokh, “Efficiency of spin-to-orbit conversion in crystals subjected to torsion stresses,” Ukr. J. Phys. Opt. 14, 50–56 (2013).
[Crossref]

Other (3)

L. Allen, S. M. Barnett, and M. J. Padgett, Optical Angular Momentum (Institute of Physics Publishing, 2003).
[Crossref]

M. Bolshakov, N. Kundikova, and I. Popkov, “Optical method for investigation of the parameters of the thin film,” Progress in Electromagnetics Research Symposium 2015-Janua, 2042–2045 (2015).

A. W. Snyder and J. D. Love, Optical Waveguide Theory (Chapman and Hall, 2012).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1
Fig. 1 a) a ring-like speckle pattern at the fiber output end; b) the two beams positions after the phase conjugation and back propagation through the fiber.
Fig. 2
Fig. 2 Experimental setup. SM, semi-transparent mirrors; M, mirror; L, lenses; BNN, photorefractive crystal Ba2NaNb5O15; P, polarizer; CF, optical fiber, coiled into a helix; QWP, adjustable quarter-wave plate; CCD, CCD matrix. The inset depicts the speckle pattern of light transmitted through a coiled optical fiber.
Fig. 3
Fig. 3 Images of the conjugated wave registered by a CCD camera. The fiber length was 65 cm, the right helix diameter was 10 cm, the helix pitch (solid angle Ω) was (a) 2 cm (0.4 sr), (b) 4 cm (0.79 sr) and (c) 6 cm (1.18 sr). Angle ϑ of light incidence at the fiber input was equal to 9.7°.
Fig. 4
Fig. 4 The dependence of rotation angle φ of the speckle pattern of light transmitted through the optical fiber, coiled into a helix, under the sign of the circular polarization change on solid angle Ω subtended by one helix coil in the momentum space. The diameter of one coil of the uniform right and left helix d = 10 cm, fiber length being 65 cm.

Tables (2)

Tables Icon

Table 1 Six types of known effects of the spin-orbit interactions of light and where they are observed.

Tables Icon

Table 2 Three types of joint effect of the two types of AM on the third AM.

Equations (8)

Equations on this page are rendered with MathJax. Learn more.

n cl 2 π λ β l N n co 2 π λ .
δ β l > 1 , N σ = ( 2 Δ ) 3 / 2 2 ρ W N U N 2 V 3 K l ( W N ) K l σ ( W N ) , δ β l < 1 , N σ = ( 2 Δ ) 3 / 2 2 ρ W N U N 2 V 3 K l ( W N ) K l + σ ( W N ) .
U N J l + 1 ( U N ) J l ( U N ) = W N K l + 1 ( W N ) K l ( W N ) ,
Ω = 2 γ π h π 2 d 2 + h 2
ρ B = γ 2 π h ( π 2 d 2 + h 2 ) .
Δ n B σ = σ λ 2 π ρ B .
δ β B σ , γ = σ γ 2 π h ( π 2 d 2 + h 2 ) .
cos φ 2 = H 2 D b tan ϑ .

Metrics