Abstract

Scanning second harmonic generation microscopy has been used to investigate crystallographic orientation of the grain structure in Al wire bonds in insulated gate bipolar transistor modules. It was shown that the recorded second harmonic microscopy images revealed the grain structure of the Al sample. Additional information of the individual grain orientation was achieved by using simple interpretations of the recorded rotational anisotropy.

© 2015 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
In vivo structural imaging of the cornea by polarization-resolved second harmonic microscopy

Gaël Latour, Ivan Gusachenko, Laura Kowalczuk, Isabelle Lamarre, and Marie-Claire Schanne-Klein
Biomed. Opt. Express 3(1) 1-15 (2012)

Near-field second-harmonic microscopy of thin ferroelectric films

I. I. Smolyaninov, H. Y. Liang, C. H. Lee, C. C. Davis, S. Aggarwal, and R. Ramesh
Opt. Lett. 25(11) 835-837 (2000)

Polarization-resolved second harmonic generation microscopy with a four-channel Stokes-polarimeter

Nirmal Mazumder, Jianjun Qiu, Matthew R. Foreman, Carlos Macías Romero, Chih-Wei Hu, Han-Ruei Tsai, Peter Török, and Fu-Jen Kao
Opt. Express 20(13) 14090-14099 (2012)

References

  • View by:
  • |
  • |
  • |

  1. P. A. Agyakwa, M. R. Corfield, L. Yang, J. F. Li, V. M. F. Marques, and C. M. Johnson, “Microstructural evolution of ultrasonically bonded high purity Al wire during extended range thermal cycling,” Microelectron. Reliab. 51(2), 406–415 (2011).
    [Crossref]
  2. M. S. Broll, U. Geissler, J. Höfer, S. Schmitz, O. Wittler, and K. D. Lang, “Microstructural evolution of ultrasonic-bonded aluminum wires,” Microelectron. Reliab. 55(6), 961–968 (2015).
    [Crossref]
  3. K. B. Pedersen, D. Benning, P. K. Kristensen, V. N. Popok, and K. Pedersen, “Interface structure and strength of ultrasonically wedge bonded heavy aluminium wires in Si-based power modules,” J. Mater. Sci. Mater. Electron. 25(7), 2863–2871 (2014).
    [Crossref]
  4. S. Brasselet, “Polarization-resolved nonlinear microscopy: application to structural molecular and biological imaging,” Adv. Opt. Photonics 3(3), 205–271 (2011).
    [Crossref]
  5. R. Hristu, S. G. Stanciu, D. E. Tranca, A. Matei, and G. A. Stanciu, “Nonlinear optical imaging of defects in cubic silicon carbide epilayers,” Sci. Rep. 4, 5258 (2014).
    [Crossref] [PubMed]
  6. M. Lei, J. Price, W.-E. Wang, M. H. Wong, R. Droopad, P. Kirsch, G. Bersuker, and M. C. Downer, “Characterization of anti-phase boundaries in hetero-epitaxial polar-on- nonpolar semiconductor films by optical second-harmonic generation,” Appl. Phys. Lett. 102(15), 152103 (2013).
    [Crossref]
  7. C.-K. Sun, S.-W. Chu, S.-P. Tai, S. Keller, A. Abare, U. K. Mishra, and S. P. DenBaars, “Mapping piezoelectric-field distribution in gallium nitride with scanning second-harmonic generation microscopy,” Scanning 23(3), 182–192 (2001).
    [Crossref] [PubMed]
  8. G. V. Voort, Metallography and Microstructures (ASM International, 2004).
  9. J. E. Sipe, D. J. Moss, and H. M. van Driel, “Phenomenological theory of optical second- and third-harmonic generation from cubic centrosymmetric crystals,” Phys. Rev. B Condens. Matter 35(3), 1129–1141 (1987).
    [Crossref] [PubMed]
  10. C. Jakobsen, D. Podenas, and K. Pedersen, “Optical second-harmonic generation from vicinal Al(100) crystals,” Surf. Sci. 321(1-2), 1–7 (1994).
    [Crossref]
  11. A. V. Petukhov, C. Jakobsen, and K. Pedersen, “Experimental evidence of the origin of rotational anisotropy in second harmonic generation from vicinal Al surfaces,” Surf. Sci. 369(1-3), 265–276 (1996).
    [Crossref]
  12. Y. R. Shen, “Surface-properties probed by 2nd-harmonic and sum-frequency generation,” Nature 337(6207), 519–525 (1989).
    [Crossref]
  13. N. W. Ashcroft and K. Sturm, “Interband absorption and the optical properties of polyvalent metals,” Phys. Rev. B 3(6), 1898–1910 (1971).
    [Crossref]
  14. K. Pedersen and S. I. Bozhevolnyi, “Second-harmonic generation scanning microscopy on domains in Al surfaces,” Phys. Status Solidi 175(1), 201–206 (1999).
    [Crossref]

2015 (1)

M. S. Broll, U. Geissler, J. Höfer, S. Schmitz, O. Wittler, and K. D. Lang, “Microstructural evolution of ultrasonic-bonded aluminum wires,” Microelectron. Reliab. 55(6), 961–968 (2015).
[Crossref]

2014 (2)

K. B. Pedersen, D. Benning, P. K. Kristensen, V. N. Popok, and K. Pedersen, “Interface structure and strength of ultrasonically wedge bonded heavy aluminium wires in Si-based power modules,” J. Mater. Sci. Mater. Electron. 25(7), 2863–2871 (2014).
[Crossref]

R. Hristu, S. G. Stanciu, D. E. Tranca, A. Matei, and G. A. Stanciu, “Nonlinear optical imaging of defects in cubic silicon carbide epilayers,” Sci. Rep. 4, 5258 (2014).
[Crossref] [PubMed]

2013 (1)

M. Lei, J. Price, W.-E. Wang, M. H. Wong, R. Droopad, P. Kirsch, G. Bersuker, and M. C. Downer, “Characterization of anti-phase boundaries in hetero-epitaxial polar-on- nonpolar semiconductor films by optical second-harmonic generation,” Appl. Phys. Lett. 102(15), 152103 (2013).
[Crossref]

2011 (2)

S. Brasselet, “Polarization-resolved nonlinear microscopy: application to structural molecular and biological imaging,” Adv. Opt. Photonics 3(3), 205–271 (2011).
[Crossref]

P. A. Agyakwa, M. R. Corfield, L. Yang, J. F. Li, V. M. F. Marques, and C. M. Johnson, “Microstructural evolution of ultrasonically bonded high purity Al wire during extended range thermal cycling,” Microelectron. Reliab. 51(2), 406–415 (2011).
[Crossref]

2001 (1)

C.-K. Sun, S.-W. Chu, S.-P. Tai, S. Keller, A. Abare, U. K. Mishra, and S. P. DenBaars, “Mapping piezoelectric-field distribution in gallium nitride with scanning second-harmonic generation microscopy,” Scanning 23(3), 182–192 (2001).
[Crossref] [PubMed]

1999 (1)

K. Pedersen and S. I. Bozhevolnyi, “Second-harmonic generation scanning microscopy on domains in Al surfaces,” Phys. Status Solidi 175(1), 201–206 (1999).
[Crossref]

1996 (1)

A. V. Petukhov, C. Jakobsen, and K. Pedersen, “Experimental evidence of the origin of rotational anisotropy in second harmonic generation from vicinal Al surfaces,” Surf. Sci. 369(1-3), 265–276 (1996).
[Crossref]

1994 (1)

C. Jakobsen, D. Podenas, and K. Pedersen, “Optical second-harmonic generation from vicinal Al(100) crystals,” Surf. Sci. 321(1-2), 1–7 (1994).
[Crossref]

1989 (1)

Y. R. Shen, “Surface-properties probed by 2nd-harmonic and sum-frequency generation,” Nature 337(6207), 519–525 (1989).
[Crossref]

1987 (1)

J. E. Sipe, D. J. Moss, and H. M. van Driel, “Phenomenological theory of optical second- and third-harmonic generation from cubic centrosymmetric crystals,” Phys. Rev. B Condens. Matter 35(3), 1129–1141 (1987).
[Crossref] [PubMed]

1971 (1)

N. W. Ashcroft and K. Sturm, “Interband absorption and the optical properties of polyvalent metals,” Phys. Rev. B 3(6), 1898–1910 (1971).
[Crossref]

Abare, A.

C.-K. Sun, S.-W. Chu, S.-P. Tai, S. Keller, A. Abare, U. K. Mishra, and S. P. DenBaars, “Mapping piezoelectric-field distribution in gallium nitride with scanning second-harmonic generation microscopy,” Scanning 23(3), 182–192 (2001).
[Crossref] [PubMed]

Agyakwa, P. A.

P. A. Agyakwa, M. R. Corfield, L. Yang, J. F. Li, V. M. F. Marques, and C. M. Johnson, “Microstructural evolution of ultrasonically bonded high purity Al wire during extended range thermal cycling,” Microelectron. Reliab. 51(2), 406–415 (2011).
[Crossref]

Ashcroft, N. W.

N. W. Ashcroft and K. Sturm, “Interband absorption and the optical properties of polyvalent metals,” Phys. Rev. B 3(6), 1898–1910 (1971).
[Crossref]

Benning, D.

K. B. Pedersen, D. Benning, P. K. Kristensen, V. N. Popok, and K. Pedersen, “Interface structure and strength of ultrasonically wedge bonded heavy aluminium wires in Si-based power modules,” J. Mater. Sci. Mater. Electron. 25(7), 2863–2871 (2014).
[Crossref]

Bersuker, G.

M. Lei, J. Price, W.-E. Wang, M. H. Wong, R. Droopad, P. Kirsch, G. Bersuker, and M. C. Downer, “Characterization of anti-phase boundaries in hetero-epitaxial polar-on- nonpolar semiconductor films by optical second-harmonic generation,” Appl. Phys. Lett. 102(15), 152103 (2013).
[Crossref]

Bozhevolnyi, S. I.

K. Pedersen and S. I. Bozhevolnyi, “Second-harmonic generation scanning microscopy on domains in Al surfaces,” Phys. Status Solidi 175(1), 201–206 (1999).
[Crossref]

Brasselet, S.

S. Brasselet, “Polarization-resolved nonlinear microscopy: application to structural molecular and biological imaging,” Adv. Opt. Photonics 3(3), 205–271 (2011).
[Crossref]

Broll, M. S.

M. S. Broll, U. Geissler, J. Höfer, S. Schmitz, O. Wittler, and K. D. Lang, “Microstructural evolution of ultrasonic-bonded aluminum wires,” Microelectron. Reliab. 55(6), 961–968 (2015).
[Crossref]

Chu, S.-W.

C.-K. Sun, S.-W. Chu, S.-P. Tai, S. Keller, A. Abare, U. K. Mishra, and S. P. DenBaars, “Mapping piezoelectric-field distribution in gallium nitride with scanning second-harmonic generation microscopy,” Scanning 23(3), 182–192 (2001).
[Crossref] [PubMed]

Corfield, M. R.

P. A. Agyakwa, M. R. Corfield, L. Yang, J. F. Li, V. M. F. Marques, and C. M. Johnson, “Microstructural evolution of ultrasonically bonded high purity Al wire during extended range thermal cycling,” Microelectron. Reliab. 51(2), 406–415 (2011).
[Crossref]

DenBaars, S. P.

C.-K. Sun, S.-W. Chu, S.-P. Tai, S. Keller, A. Abare, U. K. Mishra, and S. P. DenBaars, “Mapping piezoelectric-field distribution in gallium nitride with scanning second-harmonic generation microscopy,” Scanning 23(3), 182–192 (2001).
[Crossref] [PubMed]

Downer, M. C.

M. Lei, J. Price, W.-E. Wang, M. H. Wong, R. Droopad, P. Kirsch, G. Bersuker, and M. C. Downer, “Characterization of anti-phase boundaries in hetero-epitaxial polar-on- nonpolar semiconductor films by optical second-harmonic generation,” Appl. Phys. Lett. 102(15), 152103 (2013).
[Crossref]

Droopad, R.

M. Lei, J. Price, W.-E. Wang, M. H. Wong, R. Droopad, P. Kirsch, G. Bersuker, and M. C. Downer, “Characterization of anti-phase boundaries in hetero-epitaxial polar-on- nonpolar semiconductor films by optical second-harmonic generation,” Appl. Phys. Lett. 102(15), 152103 (2013).
[Crossref]

Geissler, U.

M. S. Broll, U. Geissler, J. Höfer, S. Schmitz, O. Wittler, and K. D. Lang, “Microstructural evolution of ultrasonic-bonded aluminum wires,” Microelectron. Reliab. 55(6), 961–968 (2015).
[Crossref]

Höfer, J.

M. S. Broll, U. Geissler, J. Höfer, S. Schmitz, O. Wittler, and K. D. Lang, “Microstructural evolution of ultrasonic-bonded aluminum wires,” Microelectron. Reliab. 55(6), 961–968 (2015).
[Crossref]

Hristu, R.

R. Hristu, S. G. Stanciu, D. E. Tranca, A. Matei, and G. A. Stanciu, “Nonlinear optical imaging of defects in cubic silicon carbide epilayers,” Sci. Rep. 4, 5258 (2014).
[Crossref] [PubMed]

Jakobsen, C.

A. V. Petukhov, C. Jakobsen, and K. Pedersen, “Experimental evidence of the origin of rotational anisotropy in second harmonic generation from vicinal Al surfaces,” Surf. Sci. 369(1-3), 265–276 (1996).
[Crossref]

C. Jakobsen, D. Podenas, and K. Pedersen, “Optical second-harmonic generation from vicinal Al(100) crystals,” Surf. Sci. 321(1-2), 1–7 (1994).
[Crossref]

Johnson, C. M.

P. A. Agyakwa, M. R. Corfield, L. Yang, J. F. Li, V. M. F. Marques, and C. M. Johnson, “Microstructural evolution of ultrasonically bonded high purity Al wire during extended range thermal cycling,” Microelectron. Reliab. 51(2), 406–415 (2011).
[Crossref]

Keller, S.

C.-K. Sun, S.-W. Chu, S.-P. Tai, S. Keller, A. Abare, U. K. Mishra, and S. P. DenBaars, “Mapping piezoelectric-field distribution in gallium nitride with scanning second-harmonic generation microscopy,” Scanning 23(3), 182–192 (2001).
[Crossref] [PubMed]

Kirsch, P.

M. Lei, J. Price, W.-E. Wang, M. H. Wong, R. Droopad, P. Kirsch, G. Bersuker, and M. C. Downer, “Characterization of anti-phase boundaries in hetero-epitaxial polar-on- nonpolar semiconductor films by optical second-harmonic generation,” Appl. Phys. Lett. 102(15), 152103 (2013).
[Crossref]

Kristensen, P. K.

K. B. Pedersen, D. Benning, P. K. Kristensen, V. N. Popok, and K. Pedersen, “Interface structure and strength of ultrasonically wedge bonded heavy aluminium wires in Si-based power modules,” J. Mater. Sci. Mater. Electron. 25(7), 2863–2871 (2014).
[Crossref]

Lang, K. D.

M. S. Broll, U. Geissler, J. Höfer, S. Schmitz, O. Wittler, and K. D. Lang, “Microstructural evolution of ultrasonic-bonded aluminum wires,” Microelectron. Reliab. 55(6), 961–968 (2015).
[Crossref]

Lei, M.

M. Lei, J. Price, W.-E. Wang, M. H. Wong, R. Droopad, P. Kirsch, G. Bersuker, and M. C. Downer, “Characterization of anti-phase boundaries in hetero-epitaxial polar-on- nonpolar semiconductor films by optical second-harmonic generation,” Appl. Phys. Lett. 102(15), 152103 (2013).
[Crossref]

Li, J. F.

P. A. Agyakwa, M. R. Corfield, L. Yang, J. F. Li, V. M. F. Marques, and C. M. Johnson, “Microstructural evolution of ultrasonically bonded high purity Al wire during extended range thermal cycling,” Microelectron. Reliab. 51(2), 406–415 (2011).
[Crossref]

Marques, V. M. F.

P. A. Agyakwa, M. R. Corfield, L. Yang, J. F. Li, V. M. F. Marques, and C. M. Johnson, “Microstructural evolution of ultrasonically bonded high purity Al wire during extended range thermal cycling,” Microelectron. Reliab. 51(2), 406–415 (2011).
[Crossref]

Matei, A.

R. Hristu, S. G. Stanciu, D. E. Tranca, A. Matei, and G. A. Stanciu, “Nonlinear optical imaging of defects in cubic silicon carbide epilayers,” Sci. Rep. 4, 5258 (2014).
[Crossref] [PubMed]

Mishra, U. K.

C.-K. Sun, S.-W. Chu, S.-P. Tai, S. Keller, A. Abare, U. K. Mishra, and S. P. DenBaars, “Mapping piezoelectric-field distribution in gallium nitride with scanning second-harmonic generation microscopy,” Scanning 23(3), 182–192 (2001).
[Crossref] [PubMed]

Moss, D. J.

J. E. Sipe, D. J. Moss, and H. M. van Driel, “Phenomenological theory of optical second- and third-harmonic generation from cubic centrosymmetric crystals,” Phys. Rev. B Condens. Matter 35(3), 1129–1141 (1987).
[Crossref] [PubMed]

Pedersen, K.

K. B. Pedersen, D. Benning, P. K. Kristensen, V. N. Popok, and K. Pedersen, “Interface structure and strength of ultrasonically wedge bonded heavy aluminium wires in Si-based power modules,” J. Mater. Sci. Mater. Electron. 25(7), 2863–2871 (2014).
[Crossref]

K. Pedersen and S. I. Bozhevolnyi, “Second-harmonic generation scanning microscopy on domains in Al surfaces,” Phys. Status Solidi 175(1), 201–206 (1999).
[Crossref]

A. V. Petukhov, C. Jakobsen, and K. Pedersen, “Experimental evidence of the origin of rotational anisotropy in second harmonic generation from vicinal Al surfaces,” Surf. Sci. 369(1-3), 265–276 (1996).
[Crossref]

C. Jakobsen, D. Podenas, and K. Pedersen, “Optical second-harmonic generation from vicinal Al(100) crystals,” Surf. Sci. 321(1-2), 1–7 (1994).
[Crossref]

Pedersen, K. B.

K. B. Pedersen, D. Benning, P. K. Kristensen, V. N. Popok, and K. Pedersen, “Interface structure and strength of ultrasonically wedge bonded heavy aluminium wires in Si-based power modules,” J. Mater. Sci. Mater. Electron. 25(7), 2863–2871 (2014).
[Crossref]

Petukhov, A. V.

A. V. Petukhov, C. Jakobsen, and K. Pedersen, “Experimental evidence of the origin of rotational anisotropy in second harmonic generation from vicinal Al surfaces,” Surf. Sci. 369(1-3), 265–276 (1996).
[Crossref]

Podenas, D.

C. Jakobsen, D. Podenas, and K. Pedersen, “Optical second-harmonic generation from vicinal Al(100) crystals,” Surf. Sci. 321(1-2), 1–7 (1994).
[Crossref]

Popok, V. N.

K. B. Pedersen, D. Benning, P. K. Kristensen, V. N. Popok, and K. Pedersen, “Interface structure and strength of ultrasonically wedge bonded heavy aluminium wires in Si-based power modules,” J. Mater. Sci. Mater. Electron. 25(7), 2863–2871 (2014).
[Crossref]

Price, J.

M. Lei, J. Price, W.-E. Wang, M. H. Wong, R. Droopad, P. Kirsch, G. Bersuker, and M. C. Downer, “Characterization of anti-phase boundaries in hetero-epitaxial polar-on- nonpolar semiconductor films by optical second-harmonic generation,” Appl. Phys. Lett. 102(15), 152103 (2013).
[Crossref]

Schmitz, S.

M. S. Broll, U. Geissler, J. Höfer, S. Schmitz, O. Wittler, and K. D. Lang, “Microstructural evolution of ultrasonic-bonded aluminum wires,” Microelectron. Reliab. 55(6), 961–968 (2015).
[Crossref]

Shen, Y. R.

Y. R. Shen, “Surface-properties probed by 2nd-harmonic and sum-frequency generation,” Nature 337(6207), 519–525 (1989).
[Crossref]

Sipe, J. E.

J. E. Sipe, D. J. Moss, and H. M. van Driel, “Phenomenological theory of optical second- and third-harmonic generation from cubic centrosymmetric crystals,” Phys. Rev. B Condens. Matter 35(3), 1129–1141 (1987).
[Crossref] [PubMed]

Stanciu, G. A.

R. Hristu, S. G. Stanciu, D. E. Tranca, A. Matei, and G. A. Stanciu, “Nonlinear optical imaging of defects in cubic silicon carbide epilayers,” Sci. Rep. 4, 5258 (2014).
[Crossref] [PubMed]

Stanciu, S. G.

R. Hristu, S. G. Stanciu, D. E. Tranca, A. Matei, and G. A. Stanciu, “Nonlinear optical imaging of defects in cubic silicon carbide epilayers,” Sci. Rep. 4, 5258 (2014).
[Crossref] [PubMed]

Sturm, K.

N. W. Ashcroft and K. Sturm, “Interband absorption and the optical properties of polyvalent metals,” Phys. Rev. B 3(6), 1898–1910 (1971).
[Crossref]

Sun, C.-K.

C.-K. Sun, S.-W. Chu, S.-P. Tai, S. Keller, A. Abare, U. K. Mishra, and S. P. DenBaars, “Mapping piezoelectric-field distribution in gallium nitride with scanning second-harmonic generation microscopy,” Scanning 23(3), 182–192 (2001).
[Crossref] [PubMed]

Tai, S.-P.

C.-K. Sun, S.-W. Chu, S.-P. Tai, S. Keller, A. Abare, U. K. Mishra, and S. P. DenBaars, “Mapping piezoelectric-field distribution in gallium nitride with scanning second-harmonic generation microscopy,” Scanning 23(3), 182–192 (2001).
[Crossref] [PubMed]

Tranca, D. E.

R. Hristu, S. G. Stanciu, D. E. Tranca, A. Matei, and G. A. Stanciu, “Nonlinear optical imaging of defects in cubic silicon carbide epilayers,” Sci. Rep. 4, 5258 (2014).
[Crossref] [PubMed]

van Driel, H. M.

J. E. Sipe, D. J. Moss, and H. M. van Driel, “Phenomenological theory of optical second- and third-harmonic generation from cubic centrosymmetric crystals,” Phys. Rev. B Condens. Matter 35(3), 1129–1141 (1987).
[Crossref] [PubMed]

Wang, W.-E.

M. Lei, J. Price, W.-E. Wang, M. H. Wong, R. Droopad, P. Kirsch, G. Bersuker, and M. C. Downer, “Characterization of anti-phase boundaries in hetero-epitaxial polar-on- nonpolar semiconductor films by optical second-harmonic generation,” Appl. Phys. Lett. 102(15), 152103 (2013).
[Crossref]

Wittler, O.

M. S. Broll, U. Geissler, J. Höfer, S. Schmitz, O. Wittler, and K. D. Lang, “Microstructural evolution of ultrasonic-bonded aluminum wires,” Microelectron. Reliab. 55(6), 961–968 (2015).
[Crossref]

Wong, M. H.

M. Lei, J. Price, W.-E. Wang, M. H. Wong, R. Droopad, P. Kirsch, G. Bersuker, and M. C. Downer, “Characterization of anti-phase boundaries in hetero-epitaxial polar-on- nonpolar semiconductor films by optical second-harmonic generation,” Appl. Phys. Lett. 102(15), 152103 (2013).
[Crossref]

Yang, L.

P. A. Agyakwa, M. R. Corfield, L. Yang, J. F. Li, V. M. F. Marques, and C. M. Johnson, “Microstructural evolution of ultrasonically bonded high purity Al wire during extended range thermal cycling,” Microelectron. Reliab. 51(2), 406–415 (2011).
[Crossref]

Adv. Opt. Photonics (1)

S. Brasselet, “Polarization-resolved nonlinear microscopy: application to structural molecular and biological imaging,” Adv. Opt. Photonics 3(3), 205–271 (2011).
[Crossref]

Appl. Phys. Lett. (1)

M. Lei, J. Price, W.-E. Wang, M. H. Wong, R. Droopad, P. Kirsch, G. Bersuker, and M. C. Downer, “Characterization of anti-phase boundaries in hetero-epitaxial polar-on- nonpolar semiconductor films by optical second-harmonic generation,” Appl. Phys. Lett. 102(15), 152103 (2013).
[Crossref]

J. Mater. Sci. Mater. Electron. (1)

K. B. Pedersen, D. Benning, P. K. Kristensen, V. N. Popok, and K. Pedersen, “Interface structure and strength of ultrasonically wedge bonded heavy aluminium wires in Si-based power modules,” J. Mater. Sci. Mater. Electron. 25(7), 2863–2871 (2014).
[Crossref]

Microelectron. Reliab. (2)

P. A. Agyakwa, M. R. Corfield, L. Yang, J. F. Li, V. M. F. Marques, and C. M. Johnson, “Microstructural evolution of ultrasonically bonded high purity Al wire during extended range thermal cycling,” Microelectron. Reliab. 51(2), 406–415 (2011).
[Crossref]

M. S. Broll, U. Geissler, J. Höfer, S. Schmitz, O. Wittler, and K. D. Lang, “Microstructural evolution of ultrasonic-bonded aluminum wires,” Microelectron. Reliab. 55(6), 961–968 (2015).
[Crossref]

Nature (1)

Y. R. Shen, “Surface-properties probed by 2nd-harmonic and sum-frequency generation,” Nature 337(6207), 519–525 (1989).
[Crossref]

Phys. Rev. B (1)

N. W. Ashcroft and K. Sturm, “Interband absorption and the optical properties of polyvalent metals,” Phys. Rev. B 3(6), 1898–1910 (1971).
[Crossref]

Phys. Rev. B Condens. Matter (1)

J. E. Sipe, D. J. Moss, and H. M. van Driel, “Phenomenological theory of optical second- and third-harmonic generation from cubic centrosymmetric crystals,” Phys. Rev. B Condens. Matter 35(3), 1129–1141 (1987).
[Crossref] [PubMed]

Phys. Status Solidi (1)

K. Pedersen and S. I. Bozhevolnyi, “Second-harmonic generation scanning microscopy on domains in Al surfaces,” Phys. Status Solidi 175(1), 201–206 (1999).
[Crossref]

Scanning (1)

C.-K. Sun, S.-W. Chu, S.-P. Tai, S. Keller, A. Abare, U. K. Mishra, and S. P. DenBaars, “Mapping piezoelectric-field distribution in gallium nitride with scanning second-harmonic generation microscopy,” Scanning 23(3), 182–192 (2001).
[Crossref] [PubMed]

Sci. Rep. (1)

R. Hristu, S. G. Stanciu, D. E. Tranca, A. Matei, and G. A. Stanciu, “Nonlinear optical imaging of defects in cubic silicon carbide epilayers,” Sci. Rep. 4, 5258 (2014).
[Crossref] [PubMed]

Surf. Sci. (2)

C. Jakobsen, D. Podenas, and K. Pedersen, “Optical second-harmonic generation from vicinal Al(100) crystals,” Surf. Sci. 321(1-2), 1–7 (1994).
[Crossref]

A. V. Petukhov, C. Jakobsen, and K. Pedersen, “Experimental evidence of the origin of rotational anisotropy in second harmonic generation from vicinal Al surfaces,” Surf. Sci. 369(1-3), 265–276 (1996).
[Crossref]

Other (1)

G. V. Voort, Metallography and Microstructures (ASM International, 2004).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1
Fig. 1 Schematic of the experimental setup used: P1: Polarizer used to adjust the power reaching the sample. λ/2: Half waveplate mounted on a rotational stage, making it possible to rotate the polarization of the light reaching the sample. RG: RG715 Colored glass filter. AsL: High numerical aperture Aspheric lens. L: Lens. P2: Motordriven polarizer. BG: Colored glass filter (BG39). PMT: PhotoMultiplier Tube.
Fig. 2
Fig. 2 a) SHG-image of wire bond interface before electro-etching with p to p-polarization. The arrows marked A and B shows the areas where the beam focus was fixed during the rotational spectra recording. b) Zoom of an area of interest in Fig. 2(a) c) Optical microscopy image of the interface of the region in (a) after electro-etching. d) Optical microscopy image of the same area in b).
Fig. 3
Fig. 3 a) Optical microscopy image of wire interface after electrochemical etching. Insert shows enlarged image of the same area displayed in c). b) SHG-image reduced area for different polarizations. The arrows marked C shows the area where the beam focus was fixed during the rotational spectra recording (Fig. 4c).
Fig. 4
Fig. 4 Variation of the SHG signal with the polarization parallel to the direction of the pump light, recorded for three different grains: a) point A in Fig. 2(a), b) B in Fig. 2(a) and point C in Fig. 3(b). In a) the data were a fitted (red curve) by Eq. (1) with B 2 = A 4 =0 representing a surface miscut towards a [100] direction. For graph b) the data were fitted by Eq. (1) with both B1 and B2 different from zero, representing a (100) surface miscut towards [110]. In c) the data were fitted by Eq. (2), indicating a (111)-type surface.

Tables (1)

Tables Icon

Table 1 Fitting Parameters to the Graphs Shown in Fig. 4

Equations (2)

Equations on this page are rendered with MathJax. Learn more.

I 2ω (ϕ)= | A 0 + B 1 cos 3 ( ϕ π 4 )+ B 2 cos 3 ( ϕ+ π 4 ) A 4 cos(4ϕ) | 2
I 2ω (ϕ)= | A 0 + B 1 cos 3 ϕ+ B 2 [ cos 3 ( ϕ 2π 3 )+ cos 3 ( ϕ+ 2π 3 ) ] | 2 .

Metrics