Abstract

A AgGaSe2 nonlinear crystal placed in a coupled cavity is intracavity pumped by the ~1.85-µm signal pulses of a 1.064-µm pumped Rb:PPKTP doubly-resonant optical parametric oscillator (OPO) operating at a repetition rate of 100 Hz. Using two samples cut for type-I and II phase-matching, the overall idler tunability of the singly-resonant AgGeSe2 OPO covers an unprecedented spectral range from 5.8 to ~18 µm in the mid-IR.

© 2015 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Intracavity difference-frequency mixing of optical parametric oscillator signal and idler pulses in BaGa4Se7

Andrey A. Boyko, Nadezhda Y. Kostyukova, Valeriy Badikov, Dmitrii Badikov, Vladimir Panyutin, Galina Shevyrdyaeva, Valdas Pasiskevicius, Andrius Zukauskas, Georgi M. Marchev, Dmitry B. Kolker, and Valentin Petrov
Appl. Opt. 56(10) 2783-2786 (2017)

Rb:PPKTP optical parametric oscillator with intracavity difference-frequency generation in AgGaSe2

Andrey A. Boyko, Nadezhda Y. Kostyukova, Georgi M. Marchev, Valdas Pasiskevicius, Dmitry B. Kolker, Andrius Zukauskas, and Valentin Petrov
Opt. Lett. 41(12) 2791-2794 (2016)

ZnGeP2 optical parametric oscillator with 3.8–12.4-µm tunability

K. L. Vodopyanov, F. Ganikhanov, J. P. Maffetone, I. Zwieback, and W. Ruderman
Opt. Lett. 25(11) 841-843 (2000)

References

  • View by:
  • |
  • |
  • |

  1. V. Petrov, “Frequency down-conversion of solid-state laser sources to the mid-infrared spectral range using non-oxide nonlinear crystals,” Prog. Quantum Electron. 42, 1–106 (2015).
    [Crossref]
  2. A. Zakel, G. J. Wagner, W. J. Alford, and T. J. Carrig, “High-power, rapidly-tunable dual-band CdSe optical parametric oscillator,” in Advanced Solid-State Photonics, (ASSP, 2005), pp. 433–437.
  3. A. Zakel, G. J. Wagner, W. J. Alford, and T. J. Carrig, “High-power, rapidly-tunable ZnGeP2 intracavity optical parametric oscillator,” in Conference on Lasers and Electro-Optics (OSA, 2005), paper CThY5.
  4. L. H. Tan and P. B. Phua, “Generation of watt level mid-infrared wavelengths using intra-cavity ZnGeP2 OPO within a 2.1 μm Ho:YAG laser,” Proc. SPIE 7917, 79170O (2011).
    [Crossref]
  5. D. J. Kane, J. M. Hopkins, M. H. Dunn, P. Schunemann, and D. J. M. Stothard, “Tm:YAP pumped intracavity pulsed OPO based on orientation-patterned gallium arsenide (OP-GaAs),” in 6th EPS-QEOD Europhoton Conference on Solid-State, Fibre and Waveguide Coherent Light Sources, (2014), paper TuA-T1-O-03.
  6. P. B. Phua, K. S. Lai, R. F. Wu, and T. C. Chong, “Coupled tandem optical parametric oscillator (OPO): an OPO within an OPO,” Opt. Lett. 23(16), 1262–1264 (1998).
    [Crossref] [PubMed]
  7. R. Wu, K. S. Lai, W.-P. E. Lau, H. F. Wong, Y. L. Lim, K. W. Lim, and L. C. L. Li, “A novel laser integrated with a coupled tandem OPO configuration,” in Conference on Lasers and Electro-Optics (OSA, 2002), paper CTuD6.
  8. D. A. Roberts, “Dispersion equations for nonlinear optical crystals: KDP, AgGaSe2, and AgGaS2.,” Appl. Opt. 35(24), 4677–4688 (1996).
    [Crossref] [PubMed]
  9. A. Harasaki and K. Kato, “New data on the nonlinear optical constant, phase-matching, and optical damage of AgGaS2,” Jpn. J. Appl. Phys. 36(1), 700–703 (1997).
    [Crossref]

2015 (1)

V. Petrov, “Frequency down-conversion of solid-state laser sources to the mid-infrared spectral range using non-oxide nonlinear crystals,” Prog. Quantum Electron. 42, 1–106 (2015).
[Crossref]

2011 (1)

L. H. Tan and P. B. Phua, “Generation of watt level mid-infrared wavelengths using intra-cavity ZnGeP2 OPO within a 2.1 μm Ho:YAG laser,” Proc. SPIE 7917, 79170O (2011).
[Crossref]

1998 (1)

1997 (1)

A. Harasaki and K. Kato, “New data on the nonlinear optical constant, phase-matching, and optical damage of AgGaS2,” Jpn. J. Appl. Phys. 36(1), 700–703 (1997).
[Crossref]

1996 (1)

Chong, T. C.

Dunn, M. H.

D. J. Kane, J. M. Hopkins, M. H. Dunn, P. Schunemann, and D. J. M. Stothard, “Tm:YAP pumped intracavity pulsed OPO based on orientation-patterned gallium arsenide (OP-GaAs),” in 6th EPS-QEOD Europhoton Conference on Solid-State, Fibre and Waveguide Coherent Light Sources, (2014), paper TuA-T1-O-03.

Harasaki, A.

A. Harasaki and K. Kato, “New data on the nonlinear optical constant, phase-matching, and optical damage of AgGaS2,” Jpn. J. Appl. Phys. 36(1), 700–703 (1997).
[Crossref]

Hopkins, J. M.

D. J. Kane, J. M. Hopkins, M. H. Dunn, P. Schunemann, and D. J. M. Stothard, “Tm:YAP pumped intracavity pulsed OPO based on orientation-patterned gallium arsenide (OP-GaAs),” in 6th EPS-QEOD Europhoton Conference on Solid-State, Fibre and Waveguide Coherent Light Sources, (2014), paper TuA-T1-O-03.

Kane, D. J.

D. J. Kane, J. M. Hopkins, M. H. Dunn, P. Schunemann, and D. J. M. Stothard, “Tm:YAP pumped intracavity pulsed OPO based on orientation-patterned gallium arsenide (OP-GaAs),” in 6th EPS-QEOD Europhoton Conference on Solid-State, Fibre and Waveguide Coherent Light Sources, (2014), paper TuA-T1-O-03.

Kato, K.

A. Harasaki and K. Kato, “New data on the nonlinear optical constant, phase-matching, and optical damage of AgGaS2,” Jpn. J. Appl. Phys. 36(1), 700–703 (1997).
[Crossref]

Lai, K. S.

Petrov, V.

V. Petrov, “Frequency down-conversion of solid-state laser sources to the mid-infrared spectral range using non-oxide nonlinear crystals,” Prog. Quantum Electron. 42, 1–106 (2015).
[Crossref]

Phua, P. B.

L. H. Tan and P. B. Phua, “Generation of watt level mid-infrared wavelengths using intra-cavity ZnGeP2 OPO within a 2.1 μm Ho:YAG laser,” Proc. SPIE 7917, 79170O (2011).
[Crossref]

P. B. Phua, K. S. Lai, R. F. Wu, and T. C. Chong, “Coupled tandem optical parametric oscillator (OPO): an OPO within an OPO,” Opt. Lett. 23(16), 1262–1264 (1998).
[Crossref] [PubMed]

Roberts, D. A.

Schunemann, P.

D. J. Kane, J. M. Hopkins, M. H. Dunn, P. Schunemann, and D. J. M. Stothard, “Tm:YAP pumped intracavity pulsed OPO based on orientation-patterned gallium arsenide (OP-GaAs),” in 6th EPS-QEOD Europhoton Conference on Solid-State, Fibre and Waveguide Coherent Light Sources, (2014), paper TuA-T1-O-03.

Stothard, D. J. M.

D. J. Kane, J. M. Hopkins, M. H. Dunn, P. Schunemann, and D. J. M. Stothard, “Tm:YAP pumped intracavity pulsed OPO based on orientation-patterned gallium arsenide (OP-GaAs),” in 6th EPS-QEOD Europhoton Conference on Solid-State, Fibre and Waveguide Coherent Light Sources, (2014), paper TuA-T1-O-03.

Tan, L. H.

L. H. Tan and P. B. Phua, “Generation of watt level mid-infrared wavelengths using intra-cavity ZnGeP2 OPO within a 2.1 μm Ho:YAG laser,” Proc. SPIE 7917, 79170O (2011).
[Crossref]

Wu, R. F.

Appl. Opt. (1)

Jpn. J. Appl. Phys. (1)

A. Harasaki and K. Kato, “New data on the nonlinear optical constant, phase-matching, and optical damage of AgGaS2,” Jpn. J. Appl. Phys. 36(1), 700–703 (1997).
[Crossref]

Opt. Lett. (1)

Proc. SPIE (1)

L. H. Tan and P. B. Phua, “Generation of watt level mid-infrared wavelengths using intra-cavity ZnGeP2 OPO within a 2.1 μm Ho:YAG laser,” Proc. SPIE 7917, 79170O (2011).
[Crossref]

Prog. Quantum Electron. (1)

V. Petrov, “Frequency down-conversion of solid-state laser sources to the mid-infrared spectral range using non-oxide nonlinear crystals,” Prog. Quantum Electron. 42, 1–106 (2015).
[Crossref]

Other (4)

A. Zakel, G. J. Wagner, W. J. Alford, and T. J. Carrig, “High-power, rapidly-tunable dual-band CdSe optical parametric oscillator,” in Advanced Solid-State Photonics, (ASSP, 2005), pp. 433–437.

A. Zakel, G. J. Wagner, W. J. Alford, and T. J. Carrig, “High-power, rapidly-tunable ZnGeP2 intracavity optical parametric oscillator,” in Conference on Lasers and Electro-Optics (OSA, 2005), paper CThY5.

D. J. Kane, J. M. Hopkins, M. H. Dunn, P. Schunemann, and D. J. M. Stothard, “Tm:YAP pumped intracavity pulsed OPO based on orientation-patterned gallium arsenide (OP-GaAs),” in 6th EPS-QEOD Europhoton Conference on Solid-State, Fibre and Waveguide Coherent Light Sources, (2014), paper TuA-T1-O-03.

R. Wu, K. S. Lai, W.-P. E. Lau, H. F. Wong, Y. L. Lim, K. W. Lim, and L. C. L. Li, “A novel laser integrated with a coupled tandem OPO configuration,” in Conference on Lasers and Electro-Optics (OSA, 2002), paper CTuD6.

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1
Fig. 1 Photograph of the thick Rb:PPKTP crystal with axis orientation and dimensions (a) and schematic of the intracavity pumped, cascaded AGSe OPO (b).
Fig. 2
Fig. 2 Performance of the first stage (idler I1) without the AGSe crystal using different DM4 for the short (a) and long (b) wave mid-IR tuning range of the second stage. The data are corrected for the 91% transmission of DM1.
Fig. 3
Fig. 3 Idler I2 energy of the AGSe SRO obtained at normal incidence with the two samples used in dependence on the pump P1 energy at 1.064 µm (a), and angle tuning of the AGSe SRO in the mid-IR at maximum pump levels (b).
Fig. 4
Fig. 4 Angle tuning of the AGSe SRO (a): experimental results (symbols) and fits with Sellmeier expressions from [8] and [9] (lines). High resolution (2 nm) signal spectrum recorded at θ = 49.2° indicative of retracing behavior (b).
Fig. 5
Fig. 5 Low resolution spectra of the P2 = S1 and S2 pulses (black lines) at maximum power and high resolution spectrum of the P2 = S1 pulses (red line) (a). Temporal shapes of the pump laser pulse at 1.064 µm (P1), the P2 = S1 pulse without the AGSe crystal and with the second stage operating, and the idler I2 pulse at 7.32 and 11.46 µm (b).
Fig. 6
Fig. 6 M2 measurements of the I2 idler (11.46 µm) and its 2D (b) and 3D (c) beam profile at 70 mm from the f = 50 mm BaF2 lens.

Metrics