Abstract

The ability to characterize the Point Spread Function(PSF) is crucial in practical microscopy, but requires knowledge of the complex PSF for approaches that detect fields instead of intensities. Here we experimentally measure and theoretically model the volumetric amplitude and phase response of an Interferometric Cross-polarisation Microscope to demonstrate the technique’s capability to provide confocal-like images of weakly birefringent structures in living cells. We find the axial FWHM of the amplitude PSF to be 0.70 ± 0.01 μm and 0.83 μm for model and measurement, respectively, on par with confocal microscopy. Ultimately retaining both amplitude and phase information will however enable approaches for improved localisation of objects.

© 2015 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
A maximum-likelihood formalism for sub-resolution axial localization of fluorescent nanoparticles

François Aguet, Dimitri Van De Ville, and Michael Unser
Opt. Express 13(26) 10503-10522 (2005)

Interferometric imaging with three objectives

Thomas Huelsnitz and Peter Kner
J. Opt. Soc. Am. A 33(2) 179-191 (2016)

Improved axial resolution by point-spread autocorrelation function imaging

G. J. Brakenhoff and M. Müller
Opt. Lett. 21(21) 1721-1723 (1996)

References

  • View by:
  • |
  • |
  • |

  1. A. S. Stender, K. Marchuk, C. Liu, S. Sander, M. W. Meyer, E. A. Smith, B. Neupane, G. Wang, J. Li, J. Cheng, B. Huang, and N. Fang, “Single cell optical imaging and spectroscopy,” Chem. Rev. 113(4), 2469–2527 (2013).
    [Crossref] [PubMed]
  2. G. Popescu, Quantitative Phase Imaging of Cells and Tissues (McGraw-Hill, 2011).
  3. R. Oldenbourg, E. D. Salmon, and P. T. Tran, “Birefringence of single and bundled microtubules,” Biophys. J. 74(1), 645–654 (1998).
    [Crossref] [PubMed]
  4. H. Inoue, T. Yoshioka, and Y. Hotta, “Membrane-associated Phospholipase C of Drosophila retina,” J. Biol. 103(1), 91–94 (1988).
  5. R. Oldenbourg, “A new view on polarization microscopy,” Nature 381, 811–812 (1996).
    [Crossref] [PubMed]
  6. J. R. Kuhn, Z. Wu, and M. Poenie, “Modulated polarization microscopy: a promising new approach to visualizing cytoskeletal dynamics in living cells,” Biophys. J. 80, 972–985 (2001).
    [Crossref] [PubMed]
  7. P. C. D. Hobbs, “Heterodyne interferometry with a scanning optical microscope,” Ph.D. Thesis, Stanford University (1987).
  8. X. Hong, E. M. P. H. van Dijk, S. R. Hall, J. B. Götte, N. F. van Hulst, and H. Gersen, “Background-free detection of single 5 nm nanoparticles through interferometric cross-polarization microscopy,” Nano Lett. 11(2), 541–547 (2011).
    [Crossref] [PubMed]
  9. B. T. Miles, E. C. Robinson, E. M. P. H. van Dijk, I. D. Lindsay, N. F. van Hulst, and H. Gersen, “On the sensitivity of interferometric cross-polarisation microscopy,” (to be submitted).
  10. J. B. Pawley, Handbook of Biological Confocal Microscopy, 3 edition, (Springer, 2006).
    [Crossref]
  11. C. M. Brown, R. W. Cole, and T. Jinadasa, “Measuring and interpreting point spread functions to determine confocal microscope resolution and ensure quality control,” Nat. Protoc. 6, 1929–1941 (2011).
    [Crossref] [PubMed]
  12. P. Zijlstra and M. Orrit, “Single metal nanoparticles: optical detection, spectroscopy and applications,” Rep. Prog. Phys. 74(10), 106401 (2011).
    [Crossref]
  13. K. Balman and S. W. Hell, “Electric field depolarization in high aperture focusing with emphasis on annular apertures,” J. Microsc. 200(1), 59–67 (2000).
    [Crossref]
  14. B. Richards and E. Wolf, “Electromagnetic diffraction in optical systems. II. Structure of the image field in an aplanatic system,” Proc. R. Soc. A 253(1274), 358–379 (1959).
    [Crossref]
  15. M. R. Foreman and P. Török, “Computational methods in vectorial imaging,” J. Mod. Opt. 58(5–6), 339–364 (2011).
    [Crossref]
  16. L. Novotny and B. Hecht, Principles of Nano-optics (Cambridge University, 2012) Chap. 3.
    [Crossref]
  17. S. W. Hell and E. H. K. Stelzer, “Properties of a 4Pi confocal fluorescence microscope,” J. Opt. Soc. Am. A 9(12), 2159–2166 (1992).
    [Crossref]
  18. J. Hwang and W.E. Moerner, “Interferometry of a single nanoparticle using the Guoy phase of a focused laser beam,” Opt. Comm. 280, 487–491 (2007).
    [Crossref]
  19. M. Cagnet, M. Franon, and J. C. Thrierr, Atlas of Optical Phenomena (Springer-Verlag, 1962)
  20. A. Pralle, M. Prummer, E. -L. Florin, E. H. K. Stelzer, and J. K. H. Hörber, “Three-dimensional high-resolution particle tracking for optical tweezers by forward scattered light,” Microsc. Res. Techniq. 44, 378–386 (1999).
    [Crossref]
  21. C. Macias-Romero, M. R. Foreman, R. T. Munro, and P. Török, “Confocal polarization imaging in high-numerical-aperture space,” Opt. Lett. 39(8), 2322–2325 (2014).
    [Crossref] [PubMed]

2014 (1)

2013 (1)

A. S. Stender, K. Marchuk, C. Liu, S. Sander, M. W. Meyer, E. A. Smith, B. Neupane, G. Wang, J. Li, J. Cheng, B. Huang, and N. Fang, “Single cell optical imaging and spectroscopy,” Chem. Rev. 113(4), 2469–2527 (2013).
[Crossref] [PubMed]

2011 (4)

X. Hong, E. M. P. H. van Dijk, S. R. Hall, J. B. Götte, N. F. van Hulst, and H. Gersen, “Background-free detection of single 5 nm nanoparticles through interferometric cross-polarization microscopy,” Nano Lett. 11(2), 541–547 (2011).
[Crossref] [PubMed]

C. M. Brown, R. W. Cole, and T. Jinadasa, “Measuring and interpreting point spread functions to determine confocal microscope resolution and ensure quality control,” Nat. Protoc. 6, 1929–1941 (2011).
[Crossref] [PubMed]

P. Zijlstra and M. Orrit, “Single metal nanoparticles: optical detection, spectroscopy and applications,” Rep. Prog. Phys. 74(10), 106401 (2011).
[Crossref]

M. R. Foreman and P. Török, “Computational methods in vectorial imaging,” J. Mod. Opt. 58(5–6), 339–364 (2011).
[Crossref]

2007 (1)

J. Hwang and W.E. Moerner, “Interferometry of a single nanoparticle using the Guoy phase of a focused laser beam,” Opt. Comm. 280, 487–491 (2007).
[Crossref]

2001 (1)

J. R. Kuhn, Z. Wu, and M. Poenie, “Modulated polarization microscopy: a promising new approach to visualizing cytoskeletal dynamics in living cells,” Biophys. J. 80, 972–985 (2001).
[Crossref] [PubMed]

2000 (1)

K. Balman and S. W. Hell, “Electric field depolarization in high aperture focusing with emphasis on annular apertures,” J. Microsc. 200(1), 59–67 (2000).
[Crossref]

1999 (1)

A. Pralle, M. Prummer, E. -L. Florin, E. H. K. Stelzer, and J. K. H. Hörber, “Three-dimensional high-resolution particle tracking for optical tweezers by forward scattered light,” Microsc. Res. Techniq. 44, 378–386 (1999).
[Crossref]

1998 (1)

R. Oldenbourg, E. D. Salmon, and P. T. Tran, “Birefringence of single and bundled microtubules,” Biophys. J. 74(1), 645–654 (1998).
[Crossref] [PubMed]

1996 (1)

R. Oldenbourg, “A new view on polarization microscopy,” Nature 381, 811–812 (1996).
[Crossref] [PubMed]

1992 (1)

1988 (1)

H. Inoue, T. Yoshioka, and Y. Hotta, “Membrane-associated Phospholipase C of Drosophila retina,” J. Biol. 103(1), 91–94 (1988).

1959 (1)

B. Richards and E. Wolf, “Electromagnetic diffraction in optical systems. II. Structure of the image field in an aplanatic system,” Proc. R. Soc. A 253(1274), 358–379 (1959).
[Crossref]

Balman, K.

K. Balman and S. W. Hell, “Electric field depolarization in high aperture focusing with emphasis on annular apertures,” J. Microsc. 200(1), 59–67 (2000).
[Crossref]

Brown, C. M.

C. M. Brown, R. W. Cole, and T. Jinadasa, “Measuring and interpreting point spread functions to determine confocal microscope resolution and ensure quality control,” Nat. Protoc. 6, 1929–1941 (2011).
[Crossref] [PubMed]

Cagnet, M.

M. Cagnet, M. Franon, and J. C. Thrierr, Atlas of Optical Phenomena (Springer-Verlag, 1962)

Cheng, J.

A. S. Stender, K. Marchuk, C. Liu, S. Sander, M. W. Meyer, E. A. Smith, B. Neupane, G. Wang, J. Li, J. Cheng, B. Huang, and N. Fang, “Single cell optical imaging and spectroscopy,” Chem. Rev. 113(4), 2469–2527 (2013).
[Crossref] [PubMed]

Cole, R. W.

C. M. Brown, R. W. Cole, and T. Jinadasa, “Measuring and interpreting point spread functions to determine confocal microscope resolution and ensure quality control,” Nat. Protoc. 6, 1929–1941 (2011).
[Crossref] [PubMed]

Fang, N.

A. S. Stender, K. Marchuk, C. Liu, S. Sander, M. W. Meyer, E. A. Smith, B. Neupane, G. Wang, J. Li, J. Cheng, B. Huang, and N. Fang, “Single cell optical imaging and spectroscopy,” Chem. Rev. 113(4), 2469–2527 (2013).
[Crossref] [PubMed]

Florin, E. -L.

A. Pralle, M. Prummer, E. -L. Florin, E. H. K. Stelzer, and J. K. H. Hörber, “Three-dimensional high-resolution particle tracking for optical tweezers by forward scattered light,” Microsc. Res. Techniq. 44, 378–386 (1999).
[Crossref]

Foreman, M. R.

Franon, M.

M. Cagnet, M. Franon, and J. C. Thrierr, Atlas of Optical Phenomena (Springer-Verlag, 1962)

Gersen, H.

X. Hong, E. M. P. H. van Dijk, S. R. Hall, J. B. Götte, N. F. van Hulst, and H. Gersen, “Background-free detection of single 5 nm nanoparticles through interferometric cross-polarization microscopy,” Nano Lett. 11(2), 541–547 (2011).
[Crossref] [PubMed]

B. T. Miles, E. C. Robinson, E. M. P. H. van Dijk, I. D. Lindsay, N. F. van Hulst, and H. Gersen, “On the sensitivity of interferometric cross-polarisation microscopy,” (to be submitted).

Götte, J. B.

X. Hong, E. M. P. H. van Dijk, S. R. Hall, J. B. Götte, N. F. van Hulst, and H. Gersen, “Background-free detection of single 5 nm nanoparticles through interferometric cross-polarization microscopy,” Nano Lett. 11(2), 541–547 (2011).
[Crossref] [PubMed]

Hall, S. R.

X. Hong, E. M. P. H. van Dijk, S. R. Hall, J. B. Götte, N. F. van Hulst, and H. Gersen, “Background-free detection of single 5 nm nanoparticles through interferometric cross-polarization microscopy,” Nano Lett. 11(2), 541–547 (2011).
[Crossref] [PubMed]

Hecht, B.

L. Novotny and B. Hecht, Principles of Nano-optics (Cambridge University, 2012) Chap. 3.
[Crossref]

Hell, S. W.

K. Balman and S. W. Hell, “Electric field depolarization in high aperture focusing with emphasis on annular apertures,” J. Microsc. 200(1), 59–67 (2000).
[Crossref]

S. W. Hell and E. H. K. Stelzer, “Properties of a 4Pi confocal fluorescence microscope,” J. Opt. Soc. Am. A 9(12), 2159–2166 (1992).
[Crossref]

Hobbs, P. C. D.

P. C. D. Hobbs, “Heterodyne interferometry with a scanning optical microscope,” Ph.D. Thesis, Stanford University (1987).

Hong, X.

X. Hong, E. M. P. H. van Dijk, S. R. Hall, J. B. Götte, N. F. van Hulst, and H. Gersen, “Background-free detection of single 5 nm nanoparticles through interferometric cross-polarization microscopy,” Nano Lett. 11(2), 541–547 (2011).
[Crossref] [PubMed]

Hörber, J. K. H.

A. Pralle, M. Prummer, E. -L. Florin, E. H. K. Stelzer, and J. K. H. Hörber, “Three-dimensional high-resolution particle tracking for optical tweezers by forward scattered light,” Microsc. Res. Techniq. 44, 378–386 (1999).
[Crossref]

Hotta, Y.

H. Inoue, T. Yoshioka, and Y. Hotta, “Membrane-associated Phospholipase C of Drosophila retina,” J. Biol. 103(1), 91–94 (1988).

Huang, B.

A. S. Stender, K. Marchuk, C. Liu, S. Sander, M. W. Meyer, E. A. Smith, B. Neupane, G. Wang, J. Li, J. Cheng, B. Huang, and N. Fang, “Single cell optical imaging and spectroscopy,” Chem. Rev. 113(4), 2469–2527 (2013).
[Crossref] [PubMed]

Hwang, J.

J. Hwang and W.E. Moerner, “Interferometry of a single nanoparticle using the Guoy phase of a focused laser beam,” Opt. Comm. 280, 487–491 (2007).
[Crossref]

Inoue, H.

H. Inoue, T. Yoshioka, and Y. Hotta, “Membrane-associated Phospholipase C of Drosophila retina,” J. Biol. 103(1), 91–94 (1988).

Jinadasa, T.

C. M. Brown, R. W. Cole, and T. Jinadasa, “Measuring and interpreting point spread functions to determine confocal microscope resolution and ensure quality control,” Nat. Protoc. 6, 1929–1941 (2011).
[Crossref] [PubMed]

Kuhn, J. R.

J. R. Kuhn, Z. Wu, and M. Poenie, “Modulated polarization microscopy: a promising new approach to visualizing cytoskeletal dynamics in living cells,” Biophys. J. 80, 972–985 (2001).
[Crossref] [PubMed]

Li, J.

A. S. Stender, K. Marchuk, C. Liu, S. Sander, M. W. Meyer, E. A. Smith, B. Neupane, G. Wang, J. Li, J. Cheng, B. Huang, and N. Fang, “Single cell optical imaging and spectroscopy,” Chem. Rev. 113(4), 2469–2527 (2013).
[Crossref] [PubMed]

Lindsay, I. D.

B. T. Miles, E. C. Robinson, E. M. P. H. van Dijk, I. D. Lindsay, N. F. van Hulst, and H. Gersen, “On the sensitivity of interferometric cross-polarisation microscopy,” (to be submitted).

Liu, C.

A. S. Stender, K. Marchuk, C. Liu, S. Sander, M. W. Meyer, E. A. Smith, B. Neupane, G. Wang, J. Li, J. Cheng, B. Huang, and N. Fang, “Single cell optical imaging and spectroscopy,” Chem. Rev. 113(4), 2469–2527 (2013).
[Crossref] [PubMed]

Macias-Romero, C.

Marchuk, K.

A. S. Stender, K. Marchuk, C. Liu, S. Sander, M. W. Meyer, E. A. Smith, B. Neupane, G. Wang, J. Li, J. Cheng, B. Huang, and N. Fang, “Single cell optical imaging and spectroscopy,” Chem. Rev. 113(4), 2469–2527 (2013).
[Crossref] [PubMed]

Meyer, M. W.

A. S. Stender, K. Marchuk, C. Liu, S. Sander, M. W. Meyer, E. A. Smith, B. Neupane, G. Wang, J. Li, J. Cheng, B. Huang, and N. Fang, “Single cell optical imaging and spectroscopy,” Chem. Rev. 113(4), 2469–2527 (2013).
[Crossref] [PubMed]

Miles, B. T.

B. T. Miles, E. C. Robinson, E. M. P. H. van Dijk, I. D. Lindsay, N. F. van Hulst, and H. Gersen, “On the sensitivity of interferometric cross-polarisation microscopy,” (to be submitted).

Moerner, W.E.

J. Hwang and W.E. Moerner, “Interferometry of a single nanoparticle using the Guoy phase of a focused laser beam,” Opt. Comm. 280, 487–491 (2007).
[Crossref]

Munro, R. T.

Neupane, B.

A. S. Stender, K. Marchuk, C. Liu, S. Sander, M. W. Meyer, E. A. Smith, B. Neupane, G. Wang, J. Li, J. Cheng, B. Huang, and N. Fang, “Single cell optical imaging and spectroscopy,” Chem. Rev. 113(4), 2469–2527 (2013).
[Crossref] [PubMed]

Novotny, L.

L. Novotny and B. Hecht, Principles of Nano-optics (Cambridge University, 2012) Chap. 3.
[Crossref]

Oldenbourg, R.

R. Oldenbourg, E. D. Salmon, and P. T. Tran, “Birefringence of single and bundled microtubules,” Biophys. J. 74(1), 645–654 (1998).
[Crossref] [PubMed]

R. Oldenbourg, “A new view on polarization microscopy,” Nature 381, 811–812 (1996).
[Crossref] [PubMed]

Orrit, M.

P. Zijlstra and M. Orrit, “Single metal nanoparticles: optical detection, spectroscopy and applications,” Rep. Prog. Phys. 74(10), 106401 (2011).
[Crossref]

Pawley, J. B.

J. B. Pawley, Handbook of Biological Confocal Microscopy, 3 edition, (Springer, 2006).
[Crossref]

Poenie, M.

J. R. Kuhn, Z. Wu, and M. Poenie, “Modulated polarization microscopy: a promising new approach to visualizing cytoskeletal dynamics in living cells,” Biophys. J. 80, 972–985 (2001).
[Crossref] [PubMed]

Popescu, G.

G. Popescu, Quantitative Phase Imaging of Cells and Tissues (McGraw-Hill, 2011).

Pralle, A.

A. Pralle, M. Prummer, E. -L. Florin, E. H. K. Stelzer, and J. K. H. Hörber, “Three-dimensional high-resolution particle tracking for optical tweezers by forward scattered light,” Microsc. Res. Techniq. 44, 378–386 (1999).
[Crossref]

Prummer, M.

A. Pralle, M. Prummer, E. -L. Florin, E. H. K. Stelzer, and J. K. H. Hörber, “Three-dimensional high-resolution particle tracking for optical tweezers by forward scattered light,” Microsc. Res. Techniq. 44, 378–386 (1999).
[Crossref]

Richards, B.

B. Richards and E. Wolf, “Electromagnetic diffraction in optical systems. II. Structure of the image field in an aplanatic system,” Proc. R. Soc. A 253(1274), 358–379 (1959).
[Crossref]

Robinson, E. C.

B. T. Miles, E. C. Robinson, E. M. P. H. van Dijk, I. D. Lindsay, N. F. van Hulst, and H. Gersen, “On the sensitivity of interferometric cross-polarisation microscopy,” (to be submitted).

Salmon, E. D.

R. Oldenbourg, E. D. Salmon, and P. T. Tran, “Birefringence of single and bundled microtubules,” Biophys. J. 74(1), 645–654 (1998).
[Crossref] [PubMed]

Sander, S.

A. S. Stender, K. Marchuk, C. Liu, S. Sander, M. W. Meyer, E. A. Smith, B. Neupane, G. Wang, J. Li, J. Cheng, B. Huang, and N. Fang, “Single cell optical imaging and spectroscopy,” Chem. Rev. 113(4), 2469–2527 (2013).
[Crossref] [PubMed]

Smith, E. A.

A. S. Stender, K. Marchuk, C. Liu, S. Sander, M. W. Meyer, E. A. Smith, B. Neupane, G. Wang, J. Li, J. Cheng, B. Huang, and N. Fang, “Single cell optical imaging and spectroscopy,” Chem. Rev. 113(4), 2469–2527 (2013).
[Crossref] [PubMed]

Stelzer, E. H. K.

A. Pralle, M. Prummer, E. -L. Florin, E. H. K. Stelzer, and J. K. H. Hörber, “Three-dimensional high-resolution particle tracking for optical tweezers by forward scattered light,” Microsc. Res. Techniq. 44, 378–386 (1999).
[Crossref]

S. W. Hell and E. H. K. Stelzer, “Properties of a 4Pi confocal fluorescence microscope,” J. Opt. Soc. Am. A 9(12), 2159–2166 (1992).
[Crossref]

Stender, A. S.

A. S. Stender, K. Marchuk, C. Liu, S. Sander, M. W. Meyer, E. A. Smith, B. Neupane, G. Wang, J. Li, J. Cheng, B. Huang, and N. Fang, “Single cell optical imaging and spectroscopy,” Chem. Rev. 113(4), 2469–2527 (2013).
[Crossref] [PubMed]

Thrierr, J. C.

M. Cagnet, M. Franon, and J. C. Thrierr, Atlas of Optical Phenomena (Springer-Verlag, 1962)

Török, P.

Tran, P. T.

R. Oldenbourg, E. D. Salmon, and P. T. Tran, “Birefringence of single and bundled microtubules,” Biophys. J. 74(1), 645–654 (1998).
[Crossref] [PubMed]

van Dijk, E. M. P. H.

X. Hong, E. M. P. H. van Dijk, S. R. Hall, J. B. Götte, N. F. van Hulst, and H. Gersen, “Background-free detection of single 5 nm nanoparticles through interferometric cross-polarization microscopy,” Nano Lett. 11(2), 541–547 (2011).
[Crossref] [PubMed]

B. T. Miles, E. C. Robinson, E. M. P. H. van Dijk, I. D. Lindsay, N. F. van Hulst, and H. Gersen, “On the sensitivity of interferometric cross-polarisation microscopy,” (to be submitted).

van Hulst, N. F.

X. Hong, E. M. P. H. van Dijk, S. R. Hall, J. B. Götte, N. F. van Hulst, and H. Gersen, “Background-free detection of single 5 nm nanoparticles through interferometric cross-polarization microscopy,” Nano Lett. 11(2), 541–547 (2011).
[Crossref] [PubMed]

B. T. Miles, E. C. Robinson, E. M. P. H. van Dijk, I. D. Lindsay, N. F. van Hulst, and H. Gersen, “On the sensitivity of interferometric cross-polarisation microscopy,” (to be submitted).

Wang, G.

A. S. Stender, K. Marchuk, C. Liu, S. Sander, M. W. Meyer, E. A. Smith, B. Neupane, G. Wang, J. Li, J. Cheng, B. Huang, and N. Fang, “Single cell optical imaging and spectroscopy,” Chem. Rev. 113(4), 2469–2527 (2013).
[Crossref] [PubMed]

Wolf, E.

B. Richards and E. Wolf, “Electromagnetic diffraction in optical systems. II. Structure of the image field in an aplanatic system,” Proc. R. Soc. A 253(1274), 358–379 (1959).
[Crossref]

Wu, Z.

J. R. Kuhn, Z. Wu, and M. Poenie, “Modulated polarization microscopy: a promising new approach to visualizing cytoskeletal dynamics in living cells,” Biophys. J. 80, 972–985 (2001).
[Crossref] [PubMed]

Yoshioka, T.

H. Inoue, T. Yoshioka, and Y. Hotta, “Membrane-associated Phospholipase C of Drosophila retina,” J. Biol. 103(1), 91–94 (1988).

Zijlstra, P.

P. Zijlstra and M. Orrit, “Single metal nanoparticles: optical detection, spectroscopy and applications,” Rep. Prog. Phys. 74(10), 106401 (2011).
[Crossref]

Biophys. J. (2)

R. Oldenbourg, E. D. Salmon, and P. T. Tran, “Birefringence of single and bundled microtubules,” Biophys. J. 74(1), 645–654 (1998).
[Crossref] [PubMed]

J. R. Kuhn, Z. Wu, and M. Poenie, “Modulated polarization microscopy: a promising new approach to visualizing cytoskeletal dynamics in living cells,” Biophys. J. 80, 972–985 (2001).
[Crossref] [PubMed]

Chem. Rev. (1)

A. S. Stender, K. Marchuk, C. Liu, S. Sander, M. W. Meyer, E. A. Smith, B. Neupane, G. Wang, J. Li, J. Cheng, B. Huang, and N. Fang, “Single cell optical imaging and spectroscopy,” Chem. Rev. 113(4), 2469–2527 (2013).
[Crossref] [PubMed]

J. Biol. (1)

H. Inoue, T. Yoshioka, and Y. Hotta, “Membrane-associated Phospholipase C of Drosophila retina,” J. Biol. 103(1), 91–94 (1988).

J. Microsc. (1)

K. Balman and S. W. Hell, “Electric field depolarization in high aperture focusing with emphasis on annular apertures,” J. Microsc. 200(1), 59–67 (2000).
[Crossref]

J. Mod. Opt. (1)

M. R. Foreman and P. Török, “Computational methods in vectorial imaging,” J. Mod. Opt. 58(5–6), 339–364 (2011).
[Crossref]

J. Opt. Soc. Am. A (1)

Microsc. Res. Techniq. (1)

A. Pralle, M. Prummer, E. -L. Florin, E. H. K. Stelzer, and J. K. H. Hörber, “Three-dimensional high-resolution particle tracking for optical tweezers by forward scattered light,” Microsc. Res. Techniq. 44, 378–386 (1999).
[Crossref]

Nano Lett. (1)

X. Hong, E. M. P. H. van Dijk, S. R. Hall, J. B. Götte, N. F. van Hulst, and H. Gersen, “Background-free detection of single 5 nm nanoparticles through interferometric cross-polarization microscopy,” Nano Lett. 11(2), 541–547 (2011).
[Crossref] [PubMed]

Nat. Protoc. (1)

C. M. Brown, R. W. Cole, and T. Jinadasa, “Measuring and interpreting point spread functions to determine confocal microscope resolution and ensure quality control,” Nat. Protoc. 6, 1929–1941 (2011).
[Crossref] [PubMed]

Nature (1)

R. Oldenbourg, “A new view on polarization microscopy,” Nature 381, 811–812 (1996).
[Crossref] [PubMed]

Opt. Comm. (1)

J. Hwang and W.E. Moerner, “Interferometry of a single nanoparticle using the Guoy phase of a focused laser beam,” Opt. Comm. 280, 487–491 (2007).
[Crossref]

Opt. Lett. (1)

Proc. R. Soc. A (1)

B. Richards and E. Wolf, “Electromagnetic diffraction in optical systems. II. Structure of the image field in an aplanatic system,” Proc. R. Soc. A 253(1274), 358–379 (1959).
[Crossref]

Rep. Prog. Phys. (1)

P. Zijlstra and M. Orrit, “Single metal nanoparticles: optical detection, spectroscopy and applications,” Rep. Prog. Phys. 74(10), 106401 (2011).
[Crossref]

Other (6)

M. Cagnet, M. Franon, and J. C. Thrierr, Atlas of Optical Phenomena (Springer-Verlag, 1962)

L. Novotny and B. Hecht, Principles of Nano-optics (Cambridge University, 2012) Chap. 3.
[Crossref]

G. Popescu, Quantitative Phase Imaging of Cells and Tissues (McGraw-Hill, 2011).

B. T. Miles, E. C. Robinson, E. M. P. H. van Dijk, I. D. Lindsay, N. F. van Hulst, and H. Gersen, “On the sensitivity of interferometric cross-polarisation microscopy,” (to be submitted).

J. B. Pawley, Handbook of Biological Confocal Microscopy, 3 edition, (Springer, 2006).
[Crossref]

P. C. D. Hobbs, “Heterodyne interferometry with a scanning optical microscope,” Ph.D. Thesis, Stanford University (1987).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1 (a) Schematic diagram illustrating Interferometric Cross-Polarised Microscopy. The light in the signal branch is focussed on the sample using a high NA objective and collected in transmission. The depolarisation effects of high numerical aperture focussing split incident polarised light into orthogonal components. (b) parallel, (c) perpendicular, and (d) axial polarisation components of the electric field relative to the incident polarisation are mapped for the NA=1.45 illumination objective (1 μm × 1 μm) at the focal plane [16]. By overlapping with a like-polarised reference, only the perpendicular polarisation component (c) is interferometrically enhanced leading to a background free detection scheme [8].
Fig. 2
Fig. 2 ICPM detection of 10 nm diameter gold nanoparticles in the focal plane (normalised) showing light scattered by well isolated single particles (image-size: 18.51 μm × 20 μm, 512 × 512 pixels). The seven labelled particles, showing a typical single particle response, are used for a detailed comparison between measurement and model.
Fig. 3
Fig. 3 Amplitude (a, b) and Phase (c, d) Response of Measurement (left) and Model (right). Left: A single particle’s transit through the illumination volume (particle 3, Fig. 2) (0.97 μm × 1.0 μm). Right: Theoretical model generated for XY planes (1.0 μm × 1.0 μm) incremented along the optical axis (200 nm). Amplitudes have been normalised to the peak amplitude in the focus and labels indicate the distance from the focal plane in microns.
Fig. 4
Fig. 4 A graphical illustration of the 3D amplitude PSF for (a) measurement and (b) model. The surfaces are constructed from a single particle’s (particle 3, Fig. 2) transit through the focal volume using the slices presented in Fig. 3(a,b) respectively and surround a volume with greater than 40% of the peak amplitude. The amplitude PSF expresses as a cloverleaf structure extended along the z-axis with asymptotes of zero amplitude between the lobes.
Fig. 5
Fig. 5 Line scans averaged over the scattered amplitude signal from the seven labelled particles in Fig. 2 (blue) and corresponding model(red) for XY planes through the focal volume. The displayed amplitudes are normalised to the peak amplitude in the focal plane and labels indicate the distance to the focal plane in microns. The final panel (Z) shows the peak amplitudes of the preceding panels as a function of axial displacement. We find good agreement between data and model, which together demonstrate a sectioning capability on par with classical confocal microscopy.

Equations (3)

Equations on this page are rendered with MathJax. Learn more.

E ( ρ , ψ , z ) = i k f 2 E 0 n 1 n 2 e i k f [ I 0 + I 2 cos 2 ψ I 2 sin 2 ψ 2 i I 1 cos ψ ] .
I 0 = 0 θ max f w ( θ ) ( cos θ ) 1 2 sin θ ( 1 + cos θ ) J 0 ( k ρ sin θ ) exp ( i k z cos θ ) d θ I 1 = 0 θ max f w ( θ ) ( cos θ ) 1 2 sin 2 θ J 1 ( k ρ sin θ ) exp ( i k z cos θ ) d θ I 2 = 0 θ max f w ( θ ) ( cos θ ) 1 2 sin θ ( 1 cos θ ) J 2 ( k ρ sin θ ) exp ( i k z cos θ ) d θ ,
h x y ( z ) = E ill ( z ) * E det ( z ) ,

Metrics