Abstract

Multi-core fibers (MCFs) with coupled-cores are attractive large-mode area (LMA) specialty fiber designs that support the propagation of a few transverse modes often called supermodes (SMs). Compared to other LMA fibers, the uniqueness of MCF arises from the higher degrees of design space offered by a multitude of core-array geometries, resulting in extended flexibility to tailor SM properties. To date, the use of MCF as gain media has focused on lasers that operate in only one selected SM, typically the lowest order in-phase SM, which considerably limited the potential of these multi-core structures. Here, we expand the potential of MCF lasers by investigating multi-SM amplification and lasing schemes. Amplifier and laser systems using a 7 coupled-cores Yb-doped MCF as gain medium were successfully designed and assembled. Individual SM could be decomposed using the correlation filter technique mode analysis and the modal amplification factors (γi) were recorded. With access to amplification characteristics of individual transverse modes, a monolithic MCF laser was demonstrated that operates simultaneously on the two SMs carrying the highest optical gain.

© 2014 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Scaling the effective area of higher-order-mode erbium-doped fiber amplifiers

J. W. Nicholson, J. M. Fini, A. M. DeSantolo, X. Liu, K. Feder, P. S. Westbrook, V. R. Supradeepa, E. Monberg, F. DiMarcello, R. Ortiz, C. Headley, and D. J. DiGiovanni
Opt. Express 20(22) 24575-24584 (2012)

In-phase supermode selection in ring-type and concentric-type multicore fibers using large-mode-area single-mode fiber

Xiaolei Zhang, Xingyu Zhang, Qingpu Wang, Jun Chang, and Gang-Ding Peng
J. Opt. Soc. Am. A 28(5) 924-933 (2011)

Mode-selective amplification in a large mode area Yb-doped fiber using a photonic lantern

S. Wittek, R. Bustos Ramirez, J. Alvarado Zacarias, Z. Sanjabi Eznaveh, J. Bradford, G. Lopez Galmiche, D. Zhang, W. Zhu, J. Antonio-Lopez, L. Shah, and R. Amezcua Correa
Opt. Lett. 41(10) 2157-2160 (2016)

References

  • View by:
  • |
  • |
  • |

  1. A. F. Gmitro and D. Aziz, “Confocal microscopy through a fiber-optic imaging bundle,” Opt. Lett. 18(8), 565–567 (1993).
    [Crossref] [PubMed]
  2. D. J. Rchardson, J. M. Fini, and L. E. Nelson, “Space division multiplexing in optical fibres,” Nat. Photonics 7(5), 354–362 (2013).
    [Crossref]
  3. D. Richardson, J. Nilsson, and W. A. Clarkson, “High power fiber lasers: current status and future perspectives,” J. Opt. Soc. Am. B 27(11), B63–B92 (2010).
    [Crossref]
  4. J. E. Antonio-Lopez, Z. S. Eznaveh, P. LiKamWa, A. Schülzgen, and R. Amezcua-Correa, “Multicore fiber sensor for high-temperature applications up to 1000°C,” Opt. Lett. 39(15), 4309–4312 (2014).
    [Crossref] [PubMed]
  5. C. Xia, R. Amezcua Correa, N. Bai, E. Antonio-Lopez, D. May Arrioja, A. Schülzgen, M. Richardson, J. Linares, C. Montero, E. Mateo, X. Zhou, and G. Li, “Hole-assisted few-mode multicore fiber for high-density space-division multiplexing,” IEEE Photon. Technol. Lett. 24(21), 1914–1917 (2012).
    [Crossref]
  6. S. Zheng, G. Ren, Z. Lin, and S. Jian, “Mode-coupling analysis and trench design for large-mode-area low-cross-talk multicore fiber,” Appl. Opt. 52(19), 4541–4548 (2013).
    [Crossref] [PubMed]
  7. K. S. Abedin, T. F. Taunay, M. Fishteyn, D. J. DiGiovanni, V. R. Supradeepa, J. M. Fini, M. F. Yan, B. Zhu, E. M. Monberg, and F. V. Dimarcello, “Cladding-pumped erbium-doped multicore fiber amplifier,” Opt. Express 20(18), 20191–20200 (2012).
    [Crossref] [PubMed]
  8. F. Y. M. Chan, A. P. T. Lau, and H. Y. Tam, “Mode coupling dynamics and communication strategies for multi-core fiber systems,” Opt. Express 20(4), 4548–4563 (2012).
    [Crossref] [PubMed]
  9. C. Guan, L. Yuan, and J. Shi, “Supermode analysis of multicore photonic crystal fibers,” Opt. Commun. 283(13), 2686–2689 (2010).
    [Crossref]
  10. C. Xia, N. Bai, I. Ozdur, X. Zhou, and G. Li, “Supermodes for optical transmission,” Opt. Express 19(17), 16653–16664 (2011).
    [Crossref] [PubMed]
  11. P. K. Cheo, A. Liu, and G. G. King, “Ä high-brightness laser beam from a phase-locked multicore Yb-doped fiber laser array,” IEEE Photon. Technol. Lett. 13(5), 439–441 (2001).
    [Crossref]
  12. L. Li, A. Schülzgen, S. Chen, V. L. Temyanko, J. V. Moloney, and N. Peyghambarian, “Phase locking and in-phase supermode selection in monolithic multicore fiber lasers,” Opt. Lett. 31(17), 2577–2579 (2006).
    [Crossref] [PubMed]
  13. L. Li, A. Schülzgen, H. Li, V. L. Temyanko, J. V. Moloney, and N. Peyghambarian, “Phase-Locked Multicore All-Fiber Lasers: Modeling and Experimental Investigation,” J. Opt. Soc. Am. B 24(8), 1721 (2007).
    [Crossref]
  14. X. Zhu, A. Schülzgen, L. Li, H. Li, V. L. Temyanko, J. V. Moloney, and N. Peyghambarian, “Birefringent in-phase supermode operation of a multicore microstructured fiber laser,” Opt. Express 15(16), 10340–10345 (2007).
    [Crossref] [PubMed]
  15. K. Hamamoto, E. Gini, C. Holtmann, and H. Melchior, “Single-transverse-mode active multi- mode interferometer 1.45 μm high power laser diode,” Appl. Phys. B 73(5-6), 571–574 (2001).
    [Crossref]
  16. H. J. Baker, J. R. Lee, and D. R. Hall, “Self-imaging and high-beam-quality operation in multi-mode planar waveguide optical amplifiers,” Opt. Express 10(6), 297–302 (2002).
    [Crossref] [PubMed]
  17. W. S. Pelouch, D. D. Smith, J. E. Koroshetz, I. T. Mckinnie, J. R. Unternahrer, S. W. Henderson, and W. R. Scharpf, “Self-imaging in waveguide lasers and amplifiers”, OSA Topical Meeting on Advanced Solid State Lasers, 6–9 (Optical Society of America, Washington, D. C., 2002).
  18. X. Zhu, A. Schülzgen, H. Li, L. Li, Q. Wang, S. Suzuki, V. L. Temyanko, J. V. Moloney, and N. Peyghambarian, “Single-Transverse-Mode Output from a Fiber Laser Based on Multimode Interference,” Opt. Lett. 33(9), 908–910 (2008).
    [Crossref] [PubMed]
  19. Y. Huo and P. K. Cheo, “Analysis of transverse mode competition and selection in multicore fiber lasers,” J. Opt. Soc. Am. B 22(11), 2345–2349 (2005).
    [Crossref]
  20. A. S. Kurkov, S. A. Babin, I. A. Lobach, and S. I. Kablukov, “Mechanism of mode coupling in multicore fiber lasers,” Opt. Lett. 33(1), 61–63 (2008).
    [Crossref] [PubMed]
  21. K. Schuster, S. Unger, C. Aichele, F. Lindner, S. Grimm, D. Litzkendorf, J. Kobelke, J. Bierlich, K. Wondraczek, and H. Bartelt, “Material and technology trends in fiber optics,” Adv. Opt. Technol. 3, 447–468 (2014).
  22. A. Benoit, R. Dauliat, K. Schuster, S. Grimm, R. Jamier, F. Salin, and P. Roy, “Optical fiber microstructuration for strengthening single-mode laser operation in high power regime,” Opt. Eng. 53(7), 071817 (2014).
    [Crossref]
  23. A. W. Snyder, “Coupled-mode theory for optical fibers,” J. Opt. Soc. Am. 62(11), 1267–1277 (1972).
    [Crossref]
  24. T. Kaiser, D. Flamm, S. Schröter, and M. Duparré, “Complete modal decomposition for optical fibers using CGH-based correlation filters,” Opt. Express 17(11), 9347–9356 (2009).
    [Crossref] [PubMed]
  25. W. H. Lee, “Sampled fourier transform hologram generated by computer,” Appl. Opt. 9(3), 639–643 (1970).
    [Crossref] [PubMed]

2014 (3)

J. E. Antonio-Lopez, Z. S. Eznaveh, P. LiKamWa, A. Schülzgen, and R. Amezcua-Correa, “Multicore fiber sensor for high-temperature applications up to 1000°C,” Opt. Lett. 39(15), 4309–4312 (2014).
[Crossref] [PubMed]

K. Schuster, S. Unger, C. Aichele, F. Lindner, S. Grimm, D. Litzkendorf, J. Kobelke, J. Bierlich, K. Wondraczek, and H. Bartelt, “Material and technology trends in fiber optics,” Adv. Opt. Technol. 3, 447–468 (2014).

A. Benoit, R. Dauliat, K. Schuster, S. Grimm, R. Jamier, F. Salin, and P. Roy, “Optical fiber microstructuration for strengthening single-mode laser operation in high power regime,” Opt. Eng. 53(7), 071817 (2014).
[Crossref]

2013 (2)

D. J. Rchardson, J. M. Fini, and L. E. Nelson, “Space division multiplexing in optical fibres,” Nat. Photonics 7(5), 354–362 (2013).
[Crossref]

S. Zheng, G. Ren, Z. Lin, and S. Jian, “Mode-coupling analysis and trench design for large-mode-area low-cross-talk multicore fiber,” Appl. Opt. 52(19), 4541–4548 (2013).
[Crossref] [PubMed]

2012 (3)

2011 (1)

2010 (2)

D. Richardson, J. Nilsson, and W. A. Clarkson, “High power fiber lasers: current status and future perspectives,” J. Opt. Soc. Am. B 27(11), B63–B92 (2010).
[Crossref]

C. Guan, L. Yuan, and J. Shi, “Supermode analysis of multicore photonic crystal fibers,” Opt. Commun. 283(13), 2686–2689 (2010).
[Crossref]

2009 (1)

2008 (2)

2007 (2)

2006 (1)

2005 (1)

2002 (1)

2001 (2)

K. Hamamoto, E. Gini, C. Holtmann, and H. Melchior, “Single-transverse-mode active multi- mode interferometer 1.45 μm high power laser diode,” Appl. Phys. B 73(5-6), 571–574 (2001).
[Crossref]

P. K. Cheo, A. Liu, and G. G. King, “Ä high-brightness laser beam from a phase-locked multicore Yb-doped fiber laser array,” IEEE Photon. Technol. Lett. 13(5), 439–441 (2001).
[Crossref]

1993 (1)

1972 (1)

1970 (1)

Abedin, K. S.

Aichele, C.

K. Schuster, S. Unger, C. Aichele, F. Lindner, S. Grimm, D. Litzkendorf, J. Kobelke, J. Bierlich, K. Wondraczek, and H. Bartelt, “Material and technology trends in fiber optics,” Adv. Opt. Technol. 3, 447–468 (2014).

Amezcua Correa, R.

C. Xia, R. Amezcua Correa, N. Bai, E. Antonio-Lopez, D. May Arrioja, A. Schülzgen, M. Richardson, J. Linares, C. Montero, E. Mateo, X. Zhou, and G. Li, “Hole-assisted few-mode multicore fiber for high-density space-division multiplexing,” IEEE Photon. Technol. Lett. 24(21), 1914–1917 (2012).
[Crossref]

Amezcua-Correa, R.

Antonio-Lopez, E.

C. Xia, R. Amezcua Correa, N. Bai, E. Antonio-Lopez, D. May Arrioja, A. Schülzgen, M. Richardson, J. Linares, C. Montero, E. Mateo, X. Zhou, and G. Li, “Hole-assisted few-mode multicore fiber for high-density space-division multiplexing,” IEEE Photon. Technol. Lett. 24(21), 1914–1917 (2012).
[Crossref]

Antonio-Lopez, J. E.

Aziz, D.

Babin, S. A.

Bai, N.

C. Xia, R. Amezcua Correa, N. Bai, E. Antonio-Lopez, D. May Arrioja, A. Schülzgen, M. Richardson, J. Linares, C. Montero, E. Mateo, X. Zhou, and G. Li, “Hole-assisted few-mode multicore fiber for high-density space-division multiplexing,” IEEE Photon. Technol. Lett. 24(21), 1914–1917 (2012).
[Crossref]

C. Xia, N. Bai, I. Ozdur, X. Zhou, and G. Li, “Supermodes for optical transmission,” Opt. Express 19(17), 16653–16664 (2011).
[Crossref] [PubMed]

Baker, H. J.

Bartelt, H.

K. Schuster, S. Unger, C. Aichele, F. Lindner, S. Grimm, D. Litzkendorf, J. Kobelke, J. Bierlich, K. Wondraczek, and H. Bartelt, “Material and technology trends in fiber optics,” Adv. Opt. Technol. 3, 447–468 (2014).

Benoit, A.

A. Benoit, R. Dauliat, K. Schuster, S. Grimm, R. Jamier, F. Salin, and P. Roy, “Optical fiber microstructuration for strengthening single-mode laser operation in high power regime,” Opt. Eng. 53(7), 071817 (2014).
[Crossref]

Bierlich, J.

K. Schuster, S. Unger, C. Aichele, F. Lindner, S. Grimm, D. Litzkendorf, J. Kobelke, J. Bierlich, K. Wondraczek, and H. Bartelt, “Material and technology trends in fiber optics,” Adv. Opt. Technol. 3, 447–468 (2014).

Chan, F. Y. M.

Chen, S.

Cheo, P. K.

Y. Huo and P. K. Cheo, “Analysis of transverse mode competition and selection in multicore fiber lasers,” J. Opt. Soc. Am. B 22(11), 2345–2349 (2005).
[Crossref]

P. K. Cheo, A. Liu, and G. G. King, “Ä high-brightness laser beam from a phase-locked multicore Yb-doped fiber laser array,” IEEE Photon. Technol. Lett. 13(5), 439–441 (2001).
[Crossref]

Clarkson, W. A.

Dauliat, R.

A. Benoit, R. Dauliat, K. Schuster, S. Grimm, R. Jamier, F. Salin, and P. Roy, “Optical fiber microstructuration for strengthening single-mode laser operation in high power regime,” Opt. Eng. 53(7), 071817 (2014).
[Crossref]

DiGiovanni, D. J.

Dimarcello, F. V.

Duparré, M.

Eznaveh, Z. S.

Fini, J. M.

Fishteyn, M.

Flamm, D.

Gini, E.

K. Hamamoto, E. Gini, C. Holtmann, and H. Melchior, “Single-transverse-mode active multi- mode interferometer 1.45 μm high power laser diode,” Appl. Phys. B 73(5-6), 571–574 (2001).
[Crossref]

Gmitro, A. F.

Grimm, S.

A. Benoit, R. Dauliat, K. Schuster, S. Grimm, R. Jamier, F. Salin, and P. Roy, “Optical fiber microstructuration for strengthening single-mode laser operation in high power regime,” Opt. Eng. 53(7), 071817 (2014).
[Crossref]

K. Schuster, S. Unger, C. Aichele, F. Lindner, S. Grimm, D. Litzkendorf, J. Kobelke, J. Bierlich, K. Wondraczek, and H. Bartelt, “Material and technology trends in fiber optics,” Adv. Opt. Technol. 3, 447–468 (2014).

Guan, C.

C. Guan, L. Yuan, and J. Shi, “Supermode analysis of multicore photonic crystal fibers,” Opt. Commun. 283(13), 2686–2689 (2010).
[Crossref]

Hall, D. R.

Hamamoto, K.

K. Hamamoto, E. Gini, C. Holtmann, and H. Melchior, “Single-transverse-mode active multi- mode interferometer 1.45 μm high power laser diode,” Appl. Phys. B 73(5-6), 571–574 (2001).
[Crossref]

Holtmann, C.

K. Hamamoto, E. Gini, C. Holtmann, and H. Melchior, “Single-transverse-mode active multi- mode interferometer 1.45 μm high power laser diode,” Appl. Phys. B 73(5-6), 571–574 (2001).
[Crossref]

Huo, Y.

Jamier, R.

A. Benoit, R. Dauliat, K. Schuster, S. Grimm, R. Jamier, F. Salin, and P. Roy, “Optical fiber microstructuration for strengthening single-mode laser operation in high power regime,” Opt. Eng. 53(7), 071817 (2014).
[Crossref]

Jian, S.

Kablukov, S. I.

Kaiser, T.

King, G. G.

P. K. Cheo, A. Liu, and G. G. King, “Ä high-brightness laser beam from a phase-locked multicore Yb-doped fiber laser array,” IEEE Photon. Technol. Lett. 13(5), 439–441 (2001).
[Crossref]

Kobelke, J.

K. Schuster, S. Unger, C. Aichele, F. Lindner, S. Grimm, D. Litzkendorf, J. Kobelke, J. Bierlich, K. Wondraczek, and H. Bartelt, “Material and technology trends in fiber optics,” Adv. Opt. Technol. 3, 447–468 (2014).

Kurkov, A. S.

Lau, A. P. T.

Lee, J. R.

Lee, W. H.

Li, G.

C. Xia, R. Amezcua Correa, N. Bai, E. Antonio-Lopez, D. May Arrioja, A. Schülzgen, M. Richardson, J. Linares, C. Montero, E. Mateo, X. Zhou, and G. Li, “Hole-assisted few-mode multicore fiber for high-density space-division multiplexing,” IEEE Photon. Technol. Lett. 24(21), 1914–1917 (2012).
[Crossref]

C. Xia, N. Bai, I. Ozdur, X. Zhou, and G. Li, “Supermodes for optical transmission,” Opt. Express 19(17), 16653–16664 (2011).
[Crossref] [PubMed]

Li, H.

Li, L.

LiKamWa, P.

Lin, Z.

Linares, J.

C. Xia, R. Amezcua Correa, N. Bai, E. Antonio-Lopez, D. May Arrioja, A. Schülzgen, M. Richardson, J. Linares, C. Montero, E. Mateo, X. Zhou, and G. Li, “Hole-assisted few-mode multicore fiber for high-density space-division multiplexing,” IEEE Photon. Technol. Lett. 24(21), 1914–1917 (2012).
[Crossref]

Lindner, F.

K. Schuster, S. Unger, C. Aichele, F. Lindner, S. Grimm, D. Litzkendorf, J. Kobelke, J. Bierlich, K. Wondraczek, and H. Bartelt, “Material and technology trends in fiber optics,” Adv. Opt. Technol. 3, 447–468 (2014).

Litzkendorf, D.

K. Schuster, S. Unger, C. Aichele, F. Lindner, S. Grimm, D. Litzkendorf, J. Kobelke, J. Bierlich, K. Wondraczek, and H. Bartelt, “Material and technology trends in fiber optics,” Adv. Opt. Technol. 3, 447–468 (2014).

Liu, A.

P. K. Cheo, A. Liu, and G. G. King, “Ä high-brightness laser beam from a phase-locked multicore Yb-doped fiber laser array,” IEEE Photon. Technol. Lett. 13(5), 439–441 (2001).
[Crossref]

Lobach, I. A.

Mateo, E.

C. Xia, R. Amezcua Correa, N. Bai, E. Antonio-Lopez, D. May Arrioja, A. Schülzgen, M. Richardson, J. Linares, C. Montero, E. Mateo, X. Zhou, and G. Li, “Hole-assisted few-mode multicore fiber for high-density space-division multiplexing,” IEEE Photon. Technol. Lett. 24(21), 1914–1917 (2012).
[Crossref]

May Arrioja, D.

C. Xia, R. Amezcua Correa, N. Bai, E. Antonio-Lopez, D. May Arrioja, A. Schülzgen, M. Richardson, J. Linares, C. Montero, E. Mateo, X. Zhou, and G. Li, “Hole-assisted few-mode multicore fiber for high-density space-division multiplexing,” IEEE Photon. Technol. Lett. 24(21), 1914–1917 (2012).
[Crossref]

Melchior, H.

K. Hamamoto, E. Gini, C. Holtmann, and H. Melchior, “Single-transverse-mode active multi- mode interferometer 1.45 μm high power laser diode,” Appl. Phys. B 73(5-6), 571–574 (2001).
[Crossref]

Moloney, J. V.

Monberg, E. M.

Montero, C.

C. Xia, R. Amezcua Correa, N. Bai, E. Antonio-Lopez, D. May Arrioja, A. Schülzgen, M. Richardson, J. Linares, C. Montero, E. Mateo, X. Zhou, and G. Li, “Hole-assisted few-mode multicore fiber for high-density space-division multiplexing,” IEEE Photon. Technol. Lett. 24(21), 1914–1917 (2012).
[Crossref]

Nelson, L. E.

D. J. Rchardson, J. M. Fini, and L. E. Nelson, “Space division multiplexing in optical fibres,” Nat. Photonics 7(5), 354–362 (2013).
[Crossref]

Nilsson, J.

Ozdur, I.

Peyghambarian, N.

Rchardson, D. J.

D. J. Rchardson, J. M. Fini, and L. E. Nelson, “Space division multiplexing in optical fibres,” Nat. Photonics 7(5), 354–362 (2013).
[Crossref]

Ren, G.

Richardson, D.

Richardson, M.

C. Xia, R. Amezcua Correa, N. Bai, E. Antonio-Lopez, D. May Arrioja, A. Schülzgen, M. Richardson, J. Linares, C. Montero, E. Mateo, X. Zhou, and G. Li, “Hole-assisted few-mode multicore fiber for high-density space-division multiplexing,” IEEE Photon. Technol. Lett. 24(21), 1914–1917 (2012).
[Crossref]

Roy, P.

A. Benoit, R. Dauliat, K. Schuster, S. Grimm, R. Jamier, F. Salin, and P. Roy, “Optical fiber microstructuration for strengthening single-mode laser operation in high power regime,” Opt. Eng. 53(7), 071817 (2014).
[Crossref]

Salin, F.

A. Benoit, R. Dauliat, K. Schuster, S. Grimm, R. Jamier, F. Salin, and P. Roy, “Optical fiber microstructuration for strengthening single-mode laser operation in high power regime,” Opt. Eng. 53(7), 071817 (2014).
[Crossref]

Schröter, S.

Schülzgen, A.

Schuster, K.

A. Benoit, R. Dauliat, K. Schuster, S. Grimm, R. Jamier, F. Salin, and P. Roy, “Optical fiber microstructuration for strengthening single-mode laser operation in high power regime,” Opt. Eng. 53(7), 071817 (2014).
[Crossref]

K. Schuster, S. Unger, C. Aichele, F. Lindner, S. Grimm, D. Litzkendorf, J. Kobelke, J. Bierlich, K. Wondraczek, and H. Bartelt, “Material and technology trends in fiber optics,” Adv. Opt. Technol. 3, 447–468 (2014).

Shi, J.

C. Guan, L. Yuan, and J. Shi, “Supermode analysis of multicore photonic crystal fibers,” Opt. Commun. 283(13), 2686–2689 (2010).
[Crossref]

Snyder, A. W.

Supradeepa, V. R.

Suzuki, S.

Tam, H. Y.

Taunay, T. F.

Temyanko, V. L.

Unger, S.

K. Schuster, S. Unger, C. Aichele, F. Lindner, S. Grimm, D. Litzkendorf, J. Kobelke, J. Bierlich, K. Wondraczek, and H. Bartelt, “Material and technology trends in fiber optics,” Adv. Opt. Technol. 3, 447–468 (2014).

Wang, Q.

Wondraczek, K.

K. Schuster, S. Unger, C. Aichele, F. Lindner, S. Grimm, D. Litzkendorf, J. Kobelke, J. Bierlich, K. Wondraczek, and H. Bartelt, “Material and technology trends in fiber optics,” Adv. Opt. Technol. 3, 447–468 (2014).

Xia, C.

C. Xia, R. Amezcua Correa, N. Bai, E. Antonio-Lopez, D. May Arrioja, A. Schülzgen, M. Richardson, J. Linares, C. Montero, E. Mateo, X. Zhou, and G. Li, “Hole-assisted few-mode multicore fiber for high-density space-division multiplexing,” IEEE Photon. Technol. Lett. 24(21), 1914–1917 (2012).
[Crossref]

C. Xia, N. Bai, I. Ozdur, X. Zhou, and G. Li, “Supermodes for optical transmission,” Opt. Express 19(17), 16653–16664 (2011).
[Crossref] [PubMed]

Yan, M. F.

Yuan, L.

C. Guan, L. Yuan, and J. Shi, “Supermode analysis of multicore photonic crystal fibers,” Opt. Commun. 283(13), 2686–2689 (2010).
[Crossref]

Zheng, S.

Zhou, X.

C. Xia, R. Amezcua Correa, N. Bai, E. Antonio-Lopez, D. May Arrioja, A. Schülzgen, M. Richardson, J. Linares, C. Montero, E. Mateo, X. Zhou, and G. Li, “Hole-assisted few-mode multicore fiber for high-density space-division multiplexing,” IEEE Photon. Technol. Lett. 24(21), 1914–1917 (2012).
[Crossref]

C. Xia, N. Bai, I. Ozdur, X. Zhou, and G. Li, “Supermodes for optical transmission,” Opt. Express 19(17), 16653–16664 (2011).
[Crossref] [PubMed]

Zhu, B.

Zhu, X.

Adv. Opt. Technol. (1)

K. Schuster, S. Unger, C. Aichele, F. Lindner, S. Grimm, D. Litzkendorf, J. Kobelke, J. Bierlich, K. Wondraczek, and H. Bartelt, “Material and technology trends in fiber optics,” Adv. Opt. Technol. 3, 447–468 (2014).

Appl. Opt. (2)

Appl. Phys. B (1)

K. Hamamoto, E. Gini, C. Holtmann, and H. Melchior, “Single-transverse-mode active multi- mode interferometer 1.45 μm high power laser diode,” Appl. Phys. B 73(5-6), 571–574 (2001).
[Crossref]

IEEE Photon. Technol. Lett. (2)

C. Xia, R. Amezcua Correa, N. Bai, E. Antonio-Lopez, D. May Arrioja, A. Schülzgen, M. Richardson, J. Linares, C. Montero, E. Mateo, X. Zhou, and G. Li, “Hole-assisted few-mode multicore fiber for high-density space-division multiplexing,” IEEE Photon. Technol. Lett. 24(21), 1914–1917 (2012).
[Crossref]

P. K. Cheo, A. Liu, and G. G. King, “Ä high-brightness laser beam from a phase-locked multicore Yb-doped fiber laser array,” IEEE Photon. Technol. Lett. 13(5), 439–441 (2001).
[Crossref]

J. Opt. Soc. Am. (1)

J. Opt. Soc. Am. B (3)

Nat. Photonics (1)

D. J. Rchardson, J. M. Fini, and L. E. Nelson, “Space division multiplexing in optical fibres,” Nat. Photonics 7(5), 354–362 (2013).
[Crossref]

Opt. Commun. (1)

C. Guan, L. Yuan, and J. Shi, “Supermode analysis of multicore photonic crystal fibers,” Opt. Commun. 283(13), 2686–2689 (2010).
[Crossref]

Opt. Eng. (1)

A. Benoit, R. Dauliat, K. Schuster, S. Grimm, R. Jamier, F. Salin, and P. Roy, “Optical fiber microstructuration for strengthening single-mode laser operation in high power regime,” Opt. Eng. 53(7), 071817 (2014).
[Crossref]

Opt. Express (6)

Opt. Lett. (5)

Other (1)

W. S. Pelouch, D. D. Smith, J. E. Koroshetz, I. T. Mckinnie, J. R. Unternahrer, S. W. Henderson, and W. R. Scharpf, “Self-imaging in waveguide lasers and amplifiers”, OSA Topical Meeting on Advanced Solid State Lasers, 6–9 (Optical Society of America, Washington, D. C., 2002).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1
Fig. 1 (a) Microscope image of the MCF facet. (b) Measured refractive index profile at 1 μm light wavelength. (c) Transverse cut extracted from the 2D refractive index profile (at the location indicated with black arrows). (d) Calculated electric field of the 7 SMs supported by the MCF using the measured index profile.
Fig. 2
Fig. 2 (a) Light transmission measured through a chain SMF-MCF-SMF showing the characteristic multi-mode interference pattern of the MCF. (b) Fourier transform of (a) showing a maximum, signature of two interfering SMs at a DGD comprised between 2.2 and 2.5 ps/m. (c) Comparison between analytically calculated (blue line) and experimentally measured (grey area) DGD between SM1 and SM6 as function of the MCF pitch.
Fig. 3
Fig. 3 (a) Schematic of the supermode analysis experiment with: a laser source emitting around 1.06 μm wavelength, coupled in a single-mode fiber (SMF) with Mo: Microscope objective, L1: imaging lens, CGH: computer generated hologram, L2: Fourier lens. (b) Results of the MCF mode analysis showing the normalized power distribution among the excited supermodes. The red area indicates the lowest detection limit of ± 2% when measuring ρ2 values.
Fig. 4
Fig. 4 Schematic of the experiment to measure γi. The all-fiber pump combiner (PC) was used to simultaneously couple the seed and the pump light in the MCF. Mo: microscope objective; L2: magnification lens (m = 75); BP: band-pass filter isolating the signal from the residual pump; BS: beam splitter; CGH: computer generated hologram; L2: Imaging lens; 200 μm diameter pinhole; PD: photodetector.
Fig. 5
Fig. 5 (a) Measured mode amplification factor γ carried by in SM1 (square markers) and SM6 (circle markers) measured individually for various pumping levels. (b) Mode analysis of the delivered seed during pump at P = 3.3 W. Results illustrated by the dark grey bars are compared to the mode content at P = 0 W (shaded light grey bars). The seed profile emerging the MCF was measured on the CCD (right) without and with pump amplification.
Fig. 6
Fig. 6 Results of CFT mode analysis of the seed laser (1.06 μm) under (a) coil and (b) stress (pump is OFF). The corresponding MCF near field recorded on the CCD is illustrated. Results of the mode amplification factor measurement for various pump levels in the coiled (c) and stressed (d) MCF. γi values were recorded for SM1 (blue squares), SM6 (red circles), SM7 (green stars) and SM5 (orange diamonds).
Fig. 7
Fig. 7 (a) Schematic of the monolithic multicore fiber laser with MMLD: multimode laser diode. (b) Measured laser threshold vs emission wavelength (black diamonds) compared with the SMI pattern measured in Fig. 2(a) (plain grey line). The laser emission spectrum measured at λ = 1031.22 nm (filled blue diamond marker) is shown in inset.

Equations (9)

Equations on this page are rendered with MathJax. Learn more.

T( ν )=14 P 1 P 6 sin 2 ( 2 7 c ˜ ( ν )L ),
d E i dz =i( j=1 7 M ij E j )
V 1 =( 1+ 7 ,1,1,1,1,1,1 )and V 6 =( 1+ 7 ,1,1,1,1,1,1 ).
β ˜ 1 =β+(1 7 ) c ˜ and β ˜ 6 =β+(1+ 7 ) c ˜ .
T= | E 1 * (0) E 1 (L)+ E 6 * (0) E 6 (L) | 2 .
T( ν )=14 P 1 P 6 sin 2 ( 2 7 c ˜ ( ν )L )
T( ν )=14 P 1 P 6 sin 2 ( ϕ 0 +2π τ 0 ν ).
ϕ 0 =2 7 c ˜ ( ν 0 )L2 7 c 1 L ν 0
τ 0 = 7 π c 1 L

Metrics