Abstract

We present an InP based distributed Bragg reflector (DBR) laser transmitter which has a wide wavelength tuning range and a high chip output power for wavelength division multiplexing passive optical network (WDM-PON) applications. By butt-jointing InGaAsP with 1.45µm emission wavelength as the material of the grating section, the laser wavelength can be tuned for over 13nm by the DBR current. Accompanied by varying the chip temperature, the tuning range can be further enlarged to 16 nm. With the help of the integrated semiconductor optical amplifier (SOA), the largest chip output power is over 30mW. The electroabsorption modulator (EAM) is integrated into the device by the selective-area growth (SAG) technique. The 3dB small signal modulation bandwidth of the EAM is over 13 GHz. The device has both a simple tuning scheme and a simple fabrication procedure, making it suitable for low cost massive production which is desirable for WDM-PON uses.

© 2014 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
High-speed directly modulated widely tunable two-section InGaAlAs DBR lasers

Daibing Zhou, Song Liang, Lingjuan Zhao, Hongliang Zhu, and Wei Wang
Opt. Express 25(3) 2341-2346 (2017)

A flat-output widely tunable laser based on parallel-ring resonator integrated with electroabsorption modulator

Toru Segawa, Wataru Kobayashi, Tomonari Sato, Shinji Matsuo, Ryuzo Iga, and Ryo Takahashi
Opt. Express 20(26) B485-B492 (2012)

Ring-resonator-integrated tunable external cavity laser employing EAM and SOA

Ki-Hong Yoon, O-Kyun Kwon, Ki Soo Kim, Byung-Seok Choi, Su Hwan Oh, Hyun Su Kim, Jae-Sik Sim, and Chul Soo Kim
Opt. Express 19(25) 25465-25470 (2011)

References

  • View by:
  • |
  • |
  • |

  1. S. J. Park, C. H. Lee, K. T. Jeong, H. J. Park, J. G. Ahn, and K. H. Song, “Fiber-to-the-home services based on wavelength-division-multiplexing passive optical network,” J. Lightwave Technol. 22(11), 2582–2591 (2004).
    [Crossref]
  2. A. Banerjee, Y. Park, F. Clarke, H. Song, S. Yang, G. Kramer, K. Kim, and B. Mukherjee, “Wavelength-division-multiplexed passive optical network (WDM-PON) technologies for broadband access: a review,” J. Opt. Netw. 4(11), 737 (2005).
    [Crossref]
  3. G.-K. Chang, A. Chowdhury, Z. Jia, H.-C. Chien, M.-F. Huang, J. Yu, and G. Ellinas, “Key technologies of WDM-PON for future converged optical broadband access networks,” J. Opt. Commun. Netw. 1(4), C35–C50 (2009).
    [Crossref]
  4. K. H. Han, E. S. Son, H. Y. Choi, K. W. Lim, and Y. C. Chung, “Bidirectional WDM PON using light-emitting diodes spectrum-sliced with cyclic arrayed-waveguide grating,” IEEE Photon. Technol. Lett. 16(10), 2380–2382 (2004).
    [Crossref]
  5. S. Y. Kim, S. B. Jun, Y. Takushima, E. S. Son, and Y. C. Chung, “Enhanced performance of RSOA-based WDM PON by using Manchester coding,” J. Opt. Netw. 6(6), 624 (2007).
    [Crossref]
  6. K. Joon-Young, Y. Sang-Hwa, M. Sang-Rok, K. Dong Churl, and L. Chang-Hee, “400Gb/s (40×10 Gb/s) ASE injection seeded WDM-PON based on SOA-REAM,” in Optical Fiber Commun. Conf. paper OW4D (2013).
  7. Y. C. Su, Y. C. Chi, H. Y. Chen, and G. R. Lin, “Using self-feedback controlled colorless Fabry-Perot laser diode for remote control free single-mode DWDM-PON transmission,” IEEE J. Quantum Electron. 50(8), 658–668 (2014).
    [Crossref]
  8. F. Ponzini, F. Cavaliere, G. Berrettini, M. Presi, E. Ciaramella, N. Calabretta, and A. Bogoni, “Evolution scenario toward WDM-PON,” J. Opt. Commun. Netw. 1(4), C25–C34 (2009).
    [Crossref]
  9. D. Anthon, J. D. Berger, and A. Tselikov, “C+L band MEMS tunable external cavity semiconductor laser,” in Optical Fiber Commun. Conf. paper WL2 (2004).
  10. J. De Merlier, K. Mizutani, S. Sudo, K. Naniwae, Y. Furushima, S. Sato, K. Sato, and K. Kudo, “Full C-band external cavity wavelength tunable laser using a liquid-crystal-based tunable mirror,” IEEE Photon. Technol. Lett. 17(3), 681–683 (2005).
    [Crossref]
  11. A. J. Ward, D. J. Robbins, G. Busico, E. Barton, L. Ponnampalam, J. P. Duck, N. D. Whitbread, P. J. Williams, D. C. J. Reid, A. C. Carter, and M. J. Wale, “Widely tunable DS-DBR laser with monolithically integrated SOA: design and performance,” IEEE J. Sel. Top. Quantum Electron. 11(1), 149–156 (2005).
    [Crossref]
  12. J. W. Raring, L. A. Johansson, E. J. Skogen, M. N. Sysak, H. N. Poulsen, S. P. DenBaars, and L. A. Coldren, “40-Gb/s widely tunable low-drive-voltage electroabsorption-modulated transmitters,” J. Lightwave Technol. 25(1), 239–248 (2007).
    [Crossref]
  13. J. Buus and E. J. Murphy, “Tunable lasers in optical networks,” J. Lightwave Technol. 24(1), 5–11 (2006).
    [Crossref]
  14. J. E. Johnson, L. J. P. Ketelsen, D. A. Ackerman, L. M. Zhang, M. S. Hybertsen, K. G. Glogovsky, C. W. Lentz, W. A. Asous, C. L. Reynolds, J. M. Geary, K. K. Kamath, C. W. Ebert, M. Park, G. J. Przybylek, R. E. Leibenguth, S. L. Broutin, J. W. Stayt, K. F. Dreyer, L. J. Peticolas, R. L. Hartman, and T. L. Koch, “Fully stabilized electroabsorption-modulated tunable DBR laser transmitter for long-haul optical communications,” IEEE J. Sel. Top. Quantum Electron. 7(2), 168–177 (2001).
    [Crossref]
  15. J. E. Johnson, L. J. P. Ketelsen, J. M. Geary, F. S. Walters, J. M. Freund, M. S. Hybertsen, K. G. Glogovsky, and C. W. Lentz, “10 Gb/s transmission using an electroabsorption-modulated distributed Bragg reflector laser with integrated semiconductor optical amplifier,” in Optical Fiber Commun. Conf. paper TuB3 (2001).
    [Crossref]
  16. S.-B. Kim, J.-S. Sim, K. S. Kim, E.-D. Sim, S.-W. Ryu, and H. L. Park, “Selective-area MOVPE growth for 10Gbit/s electroabsorption modulator integrated with a tunable DBR laser,” J. Cryst. Growth 298, 672–675 (2007).
    [Crossref]
  17. P. Ossieur, C. Antony, A. Naughton, A. M. Clarke, H. G. Krimmel, Y. Xin, Q. Xing-Zhi, C. Ford, A. Borghesani, D. Moodie, A. Poustie, R. Wyatt, B. Harmon, I. Lealman, G. Maxwell, D. Rogers, D. W. Smith, S. Smolorz, H. Rohde, D. Nesset, R. P. Davey, and P. D. Townsend, “Demonstration of a 32×512 Split, 100 Km reach,2×32×10 Gb/s hybrid DWDM-TDMA PON using tunable external cavity lasers in the ONUs,” J. Lightwave Technol. 29(24), 3705–3718 (2011).
    [Crossref]
  18. P. Ossieur, C. Antony, A. M. Clarke, A. Naughton, H.-G. Krimmel, Y. Chang, C. Ford, A. Borghesani, D. G. Moodie, A. Poustie, R. Wyatt, B. Harmon, I. Lealman, G. Maxwell, D. Rogers, D. W. Smith, D. Nesset, R. P. Davey, and P. D. Townsend, “A 135-km 8192-split carrier distributed DWDM-TDMA PON with 2×32×10 Gb/s capacity,” J. Lightwave Technol. 29(4), 463–474 (2011).
    [Crossref]
  19. J. P. Weber, “Optimization of the carrier-induced effective index change in InGaAsP waveguides-application to tunable Bragg filters,” IEEE J. Quantum Electron. 30(8), 1801–1816 (1994).
    [Crossref]
  20. L. Q. Yu, H. T. Wang, D. Lu, S. Liang, C. Zhang, B. W. Pan, L. M. Zhang, and L. J. Zhao, “A widely tunable directly modulated dbr laser with high linearity,” IEEE Photonics J. 6(4), 1501308 (2014).
  21. S. Murata, I. Mito, and K. Kobayashi, “Tuning ranges for 1.5 μm wavelength tunable DBR lasers,” Electron. Lett. 24(10), 577–579 (1988).
    [Crossref]
  22. T. L. Koch, U. Koren, and B. I. Miller, “High performance tunable 1.5 μm InGaAs/InGaAsP multiple quantum well distributed Bragg reflector lasers,” Appl. Phys. Lett. 53(12), 1036–1038 (1988).
    [Crossref]
  23. J. Zhang and N. Ansari, “Design of WDM PON with tunable lasers: the upstream scenario,” J. Lightwave Technol. 28(2), 228–236 (2010).
    [Crossref]
  24. F. Delorme, G. Alibert, P. Boulet, S. Grosmaire, S. Slempkes, and A. Ougazzaden, “High reliability of high-power and widely tunable 1.55-μm distributed Bragg reflector lasers for WDM applications,” IEEE J. Sel. Top. Quantum Electron. 3(2), 607–614 (1997).
    [Crossref]
  25. G. Kyritsis and N. Zakhleniuk, “Self-consistent simulation model and enhancement of wavelength tuning of InGaAsP/InP multisection DBR laser diodes,” EEE J. Sel. Top. Quantum Electron. 19(5), 150331 (2013).
  26. G. Talli, C. W. Chow, P. Townsend, R. Davey, T. D. Ridder, X. Z. Qiu, P. Ossieur, H. G. Krimmel, D. Smith, I. Lealman, A. Poustie, S. Randel, and H. Rohde, “Integrated metro and access network: PIEMAN,” in Proc. 12th Eur. Conf. Netw. Opt. Commun. 493–500(2007).
  27. N. Okada, T. Uesugi, A. Matsusue, T. Fujita, S. Takagi, T. Hatta, A. Sugitatsu, and H. Watanabe, “Cost-effective 10.7Gb/s cooled TOSA employing rectangular TO-CAN package operating up to 90 ◦C,” in Optical Fiber Commun. Conf. paper JWA38 (2010).

2014 (2)

Y. C. Su, Y. C. Chi, H. Y. Chen, and G. R. Lin, “Using self-feedback controlled colorless Fabry-Perot laser diode for remote control free single-mode DWDM-PON transmission,” IEEE J. Quantum Electron. 50(8), 658–668 (2014).
[Crossref]

L. Q. Yu, H. T. Wang, D. Lu, S. Liang, C. Zhang, B. W. Pan, L. M. Zhang, and L. J. Zhao, “A widely tunable directly modulated dbr laser with high linearity,” IEEE Photonics J. 6(4), 1501308 (2014).

2013 (1)

G. Kyritsis and N. Zakhleniuk, “Self-consistent simulation model and enhancement of wavelength tuning of InGaAsP/InP multisection DBR laser diodes,” EEE J. Sel. Top. Quantum Electron. 19(5), 150331 (2013).

2011 (2)

2010 (1)

2009 (2)

2007 (3)

2006 (1)

2005 (3)

A. Banerjee, Y. Park, F. Clarke, H. Song, S. Yang, G. Kramer, K. Kim, and B. Mukherjee, “Wavelength-division-multiplexed passive optical network (WDM-PON) technologies for broadband access: a review,” J. Opt. Netw. 4(11), 737 (2005).
[Crossref]

J. De Merlier, K. Mizutani, S. Sudo, K. Naniwae, Y. Furushima, S. Sato, K. Sato, and K. Kudo, “Full C-band external cavity wavelength tunable laser using a liquid-crystal-based tunable mirror,” IEEE Photon. Technol. Lett. 17(3), 681–683 (2005).
[Crossref]

A. J. Ward, D. J. Robbins, G. Busico, E. Barton, L. Ponnampalam, J. P. Duck, N. D. Whitbread, P. J. Williams, D. C. J. Reid, A. C. Carter, and M. J. Wale, “Widely tunable DS-DBR laser with monolithically integrated SOA: design and performance,” IEEE J. Sel. Top. Quantum Electron. 11(1), 149–156 (2005).
[Crossref]

2004 (2)

S. J. Park, C. H. Lee, K. T. Jeong, H. J. Park, J. G. Ahn, and K. H. Song, “Fiber-to-the-home services based on wavelength-division-multiplexing passive optical network,” J. Lightwave Technol. 22(11), 2582–2591 (2004).
[Crossref]

K. H. Han, E. S. Son, H. Y. Choi, K. W. Lim, and Y. C. Chung, “Bidirectional WDM PON using light-emitting diodes spectrum-sliced with cyclic arrayed-waveguide grating,” IEEE Photon. Technol. Lett. 16(10), 2380–2382 (2004).
[Crossref]

2001 (1)

J. E. Johnson, L. J. P. Ketelsen, D. A. Ackerman, L. M. Zhang, M. S. Hybertsen, K. G. Glogovsky, C. W. Lentz, W. A. Asous, C. L. Reynolds, J. M. Geary, K. K. Kamath, C. W. Ebert, M. Park, G. J. Przybylek, R. E. Leibenguth, S. L. Broutin, J. W. Stayt, K. F. Dreyer, L. J. Peticolas, R. L. Hartman, and T. L. Koch, “Fully stabilized electroabsorption-modulated tunable DBR laser transmitter for long-haul optical communications,” IEEE J. Sel. Top. Quantum Electron. 7(2), 168–177 (2001).
[Crossref]

1997 (1)

F. Delorme, G. Alibert, P. Boulet, S. Grosmaire, S. Slempkes, and A. Ougazzaden, “High reliability of high-power and widely tunable 1.55-μm distributed Bragg reflector lasers for WDM applications,” IEEE J. Sel. Top. Quantum Electron. 3(2), 607–614 (1997).
[Crossref]

1994 (1)

J. P. Weber, “Optimization of the carrier-induced effective index change in InGaAsP waveguides-application to tunable Bragg filters,” IEEE J. Quantum Electron. 30(8), 1801–1816 (1994).
[Crossref]

1988 (2)

S. Murata, I. Mito, and K. Kobayashi, “Tuning ranges for 1.5 μm wavelength tunable DBR lasers,” Electron. Lett. 24(10), 577–579 (1988).
[Crossref]

T. L. Koch, U. Koren, and B. I. Miller, “High performance tunable 1.5 μm InGaAs/InGaAsP multiple quantum well distributed Bragg reflector lasers,” Appl. Phys. Lett. 53(12), 1036–1038 (1988).
[Crossref]

Ackerman, D. A.

J. E. Johnson, L. J. P. Ketelsen, D. A. Ackerman, L. M. Zhang, M. S. Hybertsen, K. G. Glogovsky, C. W. Lentz, W. A. Asous, C. L. Reynolds, J. M. Geary, K. K. Kamath, C. W. Ebert, M. Park, G. J. Przybylek, R. E. Leibenguth, S. L. Broutin, J. W. Stayt, K. F. Dreyer, L. J. Peticolas, R. L. Hartman, and T. L. Koch, “Fully stabilized electroabsorption-modulated tunable DBR laser transmitter for long-haul optical communications,” IEEE J. Sel. Top. Quantum Electron. 7(2), 168–177 (2001).
[Crossref]

Ahn, J. G.

Alibert, G.

F. Delorme, G. Alibert, P. Boulet, S. Grosmaire, S. Slempkes, and A. Ougazzaden, “High reliability of high-power and widely tunable 1.55-μm distributed Bragg reflector lasers for WDM applications,” IEEE J. Sel. Top. Quantum Electron. 3(2), 607–614 (1997).
[Crossref]

Ansari, N.

Antony, C.

Asous, W. A.

J. E. Johnson, L. J. P. Ketelsen, D. A. Ackerman, L. M. Zhang, M. S. Hybertsen, K. G. Glogovsky, C. W. Lentz, W. A. Asous, C. L. Reynolds, J. M. Geary, K. K. Kamath, C. W. Ebert, M. Park, G. J. Przybylek, R. E. Leibenguth, S. L. Broutin, J. W. Stayt, K. F. Dreyer, L. J. Peticolas, R. L. Hartman, and T. L. Koch, “Fully stabilized electroabsorption-modulated tunable DBR laser transmitter for long-haul optical communications,” IEEE J. Sel. Top. Quantum Electron. 7(2), 168–177 (2001).
[Crossref]

Banerjee, A.

Barton, E.

A. J. Ward, D. J. Robbins, G. Busico, E. Barton, L. Ponnampalam, J. P. Duck, N. D. Whitbread, P. J. Williams, D. C. J. Reid, A. C. Carter, and M. J. Wale, “Widely tunable DS-DBR laser with monolithically integrated SOA: design and performance,” IEEE J. Sel. Top. Quantum Electron. 11(1), 149–156 (2005).
[Crossref]

Berrettini, G.

Bogoni, A.

Borghesani, A.

Boulet, P.

F. Delorme, G. Alibert, P. Boulet, S. Grosmaire, S. Slempkes, and A. Ougazzaden, “High reliability of high-power and widely tunable 1.55-μm distributed Bragg reflector lasers for WDM applications,” IEEE J. Sel. Top. Quantum Electron. 3(2), 607–614 (1997).
[Crossref]

Broutin, S. L.

J. E. Johnson, L. J. P. Ketelsen, D. A. Ackerman, L. M. Zhang, M. S. Hybertsen, K. G. Glogovsky, C. W. Lentz, W. A. Asous, C. L. Reynolds, J. M. Geary, K. K. Kamath, C. W. Ebert, M. Park, G. J. Przybylek, R. E. Leibenguth, S. L. Broutin, J. W. Stayt, K. F. Dreyer, L. J. Peticolas, R. L. Hartman, and T. L. Koch, “Fully stabilized electroabsorption-modulated tunable DBR laser transmitter for long-haul optical communications,” IEEE J. Sel. Top. Quantum Electron. 7(2), 168–177 (2001).
[Crossref]

Busico, G.

A. J. Ward, D. J. Robbins, G. Busico, E. Barton, L. Ponnampalam, J. P. Duck, N. D. Whitbread, P. J. Williams, D. C. J. Reid, A. C. Carter, and M. J. Wale, “Widely tunable DS-DBR laser with monolithically integrated SOA: design and performance,” IEEE J. Sel. Top. Quantum Electron. 11(1), 149–156 (2005).
[Crossref]

Buus, J.

Calabretta, N.

Carter, A. C.

A. J. Ward, D. J. Robbins, G. Busico, E. Barton, L. Ponnampalam, J. P. Duck, N. D. Whitbread, P. J. Williams, D. C. J. Reid, A. C. Carter, and M. J. Wale, “Widely tunable DS-DBR laser with monolithically integrated SOA: design and performance,” IEEE J. Sel. Top. Quantum Electron. 11(1), 149–156 (2005).
[Crossref]

Cavaliere, F.

Chang, G.-K.

Chang, Y.

Chen, H. Y.

Y. C. Su, Y. C. Chi, H. Y. Chen, and G. R. Lin, “Using self-feedback controlled colorless Fabry-Perot laser diode for remote control free single-mode DWDM-PON transmission,” IEEE J. Quantum Electron. 50(8), 658–668 (2014).
[Crossref]

Chi, Y. C.

Y. C. Su, Y. C. Chi, H. Y. Chen, and G. R. Lin, “Using self-feedback controlled colorless Fabry-Perot laser diode for remote control free single-mode DWDM-PON transmission,” IEEE J. Quantum Electron. 50(8), 658–668 (2014).
[Crossref]

Chien, H.-C.

Choi, H. Y.

K. H. Han, E. S. Son, H. Y. Choi, K. W. Lim, and Y. C. Chung, “Bidirectional WDM PON using light-emitting diodes spectrum-sliced with cyclic arrayed-waveguide grating,” IEEE Photon. Technol. Lett. 16(10), 2380–2382 (2004).
[Crossref]

Chowdhury, A.

Chung, Y. C.

S. Y. Kim, S. B. Jun, Y. Takushima, E. S. Son, and Y. C. Chung, “Enhanced performance of RSOA-based WDM PON by using Manchester coding,” J. Opt. Netw. 6(6), 624 (2007).
[Crossref]

K. H. Han, E. S. Son, H. Y. Choi, K. W. Lim, and Y. C. Chung, “Bidirectional WDM PON using light-emitting diodes spectrum-sliced with cyclic arrayed-waveguide grating,” IEEE Photon. Technol. Lett. 16(10), 2380–2382 (2004).
[Crossref]

Ciaramella, E.

Clarke, A. M.

Clarke, F.

Coldren, L. A.

Davey, R. P.

De Merlier, J.

J. De Merlier, K. Mizutani, S. Sudo, K. Naniwae, Y. Furushima, S. Sato, K. Sato, and K. Kudo, “Full C-band external cavity wavelength tunable laser using a liquid-crystal-based tunable mirror,” IEEE Photon. Technol. Lett. 17(3), 681–683 (2005).
[Crossref]

Delorme, F.

F. Delorme, G. Alibert, P. Boulet, S. Grosmaire, S. Slempkes, and A. Ougazzaden, “High reliability of high-power and widely tunable 1.55-μm distributed Bragg reflector lasers for WDM applications,” IEEE J. Sel. Top. Quantum Electron. 3(2), 607–614 (1997).
[Crossref]

DenBaars, S. P.

Dreyer, K. F.

J. E. Johnson, L. J. P. Ketelsen, D. A. Ackerman, L. M. Zhang, M. S. Hybertsen, K. G. Glogovsky, C. W. Lentz, W. A. Asous, C. L. Reynolds, J. M. Geary, K. K. Kamath, C. W. Ebert, M. Park, G. J. Przybylek, R. E. Leibenguth, S. L. Broutin, J. W. Stayt, K. F. Dreyer, L. J. Peticolas, R. L. Hartman, and T. L. Koch, “Fully stabilized electroabsorption-modulated tunable DBR laser transmitter for long-haul optical communications,” IEEE J. Sel. Top. Quantum Electron. 7(2), 168–177 (2001).
[Crossref]

Duck, J. P.

A. J. Ward, D. J. Robbins, G. Busico, E. Barton, L. Ponnampalam, J. P. Duck, N. D. Whitbread, P. J. Williams, D. C. J. Reid, A. C. Carter, and M. J. Wale, “Widely tunable DS-DBR laser with monolithically integrated SOA: design and performance,” IEEE J. Sel. Top. Quantum Electron. 11(1), 149–156 (2005).
[Crossref]

Ebert, C. W.

J. E. Johnson, L. J. P. Ketelsen, D. A. Ackerman, L. M. Zhang, M. S. Hybertsen, K. G. Glogovsky, C. W. Lentz, W. A. Asous, C. L. Reynolds, J. M. Geary, K. K. Kamath, C. W. Ebert, M. Park, G. J. Przybylek, R. E. Leibenguth, S. L. Broutin, J. W. Stayt, K. F. Dreyer, L. J. Peticolas, R. L. Hartman, and T. L. Koch, “Fully stabilized electroabsorption-modulated tunable DBR laser transmitter for long-haul optical communications,” IEEE J. Sel. Top. Quantum Electron. 7(2), 168–177 (2001).
[Crossref]

Ellinas, G.

Ford, C.

Furushima, Y.

J. De Merlier, K. Mizutani, S. Sudo, K. Naniwae, Y. Furushima, S. Sato, K. Sato, and K. Kudo, “Full C-band external cavity wavelength tunable laser using a liquid-crystal-based tunable mirror,” IEEE Photon. Technol. Lett. 17(3), 681–683 (2005).
[Crossref]

Geary, J. M.

J. E. Johnson, L. J. P. Ketelsen, D. A. Ackerman, L. M. Zhang, M. S. Hybertsen, K. G. Glogovsky, C. W. Lentz, W. A. Asous, C. L. Reynolds, J. M. Geary, K. K. Kamath, C. W. Ebert, M. Park, G. J. Przybylek, R. E. Leibenguth, S. L. Broutin, J. W. Stayt, K. F. Dreyer, L. J. Peticolas, R. L. Hartman, and T. L. Koch, “Fully stabilized electroabsorption-modulated tunable DBR laser transmitter for long-haul optical communications,” IEEE J. Sel. Top. Quantum Electron. 7(2), 168–177 (2001).
[Crossref]

Glogovsky, K. G.

J. E. Johnson, L. J. P. Ketelsen, D. A. Ackerman, L. M. Zhang, M. S. Hybertsen, K. G. Glogovsky, C. W. Lentz, W. A. Asous, C. L. Reynolds, J. M. Geary, K. K. Kamath, C. W. Ebert, M. Park, G. J. Przybylek, R. E. Leibenguth, S. L. Broutin, J. W. Stayt, K. F. Dreyer, L. J. Peticolas, R. L. Hartman, and T. L. Koch, “Fully stabilized electroabsorption-modulated tunable DBR laser transmitter for long-haul optical communications,” IEEE J. Sel. Top. Quantum Electron. 7(2), 168–177 (2001).
[Crossref]

Grosmaire, S.

F. Delorme, G. Alibert, P. Boulet, S. Grosmaire, S. Slempkes, and A. Ougazzaden, “High reliability of high-power and widely tunable 1.55-μm distributed Bragg reflector lasers for WDM applications,” IEEE J. Sel. Top. Quantum Electron. 3(2), 607–614 (1997).
[Crossref]

Han, K. H.

K. H. Han, E. S. Son, H. Y. Choi, K. W. Lim, and Y. C. Chung, “Bidirectional WDM PON using light-emitting diodes spectrum-sliced with cyclic arrayed-waveguide grating,” IEEE Photon. Technol. Lett. 16(10), 2380–2382 (2004).
[Crossref]

Harmon, B.

Hartman, R. L.

J. E. Johnson, L. J. P. Ketelsen, D. A. Ackerman, L. M. Zhang, M. S. Hybertsen, K. G. Glogovsky, C. W. Lentz, W. A. Asous, C. L. Reynolds, J. M. Geary, K. K. Kamath, C. W. Ebert, M. Park, G. J. Przybylek, R. E. Leibenguth, S. L. Broutin, J. W. Stayt, K. F. Dreyer, L. J. Peticolas, R. L. Hartman, and T. L. Koch, “Fully stabilized electroabsorption-modulated tunable DBR laser transmitter for long-haul optical communications,” IEEE J. Sel. Top. Quantum Electron. 7(2), 168–177 (2001).
[Crossref]

Huang, M.-F.

Hybertsen, M. S.

J. E. Johnson, L. J. P. Ketelsen, D. A. Ackerman, L. M. Zhang, M. S. Hybertsen, K. G. Glogovsky, C. W. Lentz, W. A. Asous, C. L. Reynolds, J. M. Geary, K. K. Kamath, C. W. Ebert, M. Park, G. J. Przybylek, R. E. Leibenguth, S. L. Broutin, J. W. Stayt, K. F. Dreyer, L. J. Peticolas, R. L. Hartman, and T. L. Koch, “Fully stabilized electroabsorption-modulated tunable DBR laser transmitter for long-haul optical communications,” IEEE J. Sel. Top. Quantum Electron. 7(2), 168–177 (2001).
[Crossref]

Jeong, K. T.

Jia, Z.

Johansson, L. A.

Johnson, J. E.

J. E. Johnson, L. J. P. Ketelsen, D. A. Ackerman, L. M. Zhang, M. S. Hybertsen, K. G. Glogovsky, C. W. Lentz, W. A. Asous, C. L. Reynolds, J. M. Geary, K. K. Kamath, C. W. Ebert, M. Park, G. J. Przybylek, R. E. Leibenguth, S. L. Broutin, J. W. Stayt, K. F. Dreyer, L. J. Peticolas, R. L. Hartman, and T. L. Koch, “Fully stabilized electroabsorption-modulated tunable DBR laser transmitter for long-haul optical communications,” IEEE J. Sel. Top. Quantum Electron. 7(2), 168–177 (2001).
[Crossref]

Jun, S. B.

Kamath, K. K.

J. E. Johnson, L. J. P. Ketelsen, D. A. Ackerman, L. M. Zhang, M. S. Hybertsen, K. G. Glogovsky, C. W. Lentz, W. A. Asous, C. L. Reynolds, J. M. Geary, K. K. Kamath, C. W. Ebert, M. Park, G. J. Przybylek, R. E. Leibenguth, S. L. Broutin, J. W. Stayt, K. F. Dreyer, L. J. Peticolas, R. L. Hartman, and T. L. Koch, “Fully stabilized electroabsorption-modulated tunable DBR laser transmitter for long-haul optical communications,” IEEE J. Sel. Top. Quantum Electron. 7(2), 168–177 (2001).
[Crossref]

Ketelsen, L. J. P.

J. E. Johnson, L. J. P. Ketelsen, D. A. Ackerman, L. M. Zhang, M. S. Hybertsen, K. G. Glogovsky, C. W. Lentz, W. A. Asous, C. L. Reynolds, J. M. Geary, K. K. Kamath, C. W. Ebert, M. Park, G. J. Przybylek, R. E. Leibenguth, S. L. Broutin, J. W. Stayt, K. F. Dreyer, L. J. Peticolas, R. L. Hartman, and T. L. Koch, “Fully stabilized electroabsorption-modulated tunable DBR laser transmitter for long-haul optical communications,” IEEE J. Sel. Top. Quantum Electron. 7(2), 168–177 (2001).
[Crossref]

Kim, K.

Kim, K. S.

S.-B. Kim, J.-S. Sim, K. S. Kim, E.-D. Sim, S.-W. Ryu, and H. L. Park, “Selective-area MOVPE growth for 10Gbit/s electroabsorption modulator integrated with a tunable DBR laser,” J. Cryst. Growth 298, 672–675 (2007).
[Crossref]

Kim, S. Y.

Kim, S.-B.

S.-B. Kim, J.-S. Sim, K. S. Kim, E.-D. Sim, S.-W. Ryu, and H. L. Park, “Selective-area MOVPE growth for 10Gbit/s electroabsorption modulator integrated with a tunable DBR laser,” J. Cryst. Growth 298, 672–675 (2007).
[Crossref]

Kobayashi, K.

S. Murata, I. Mito, and K. Kobayashi, “Tuning ranges for 1.5 μm wavelength tunable DBR lasers,” Electron. Lett. 24(10), 577–579 (1988).
[Crossref]

Koch, T. L.

J. E. Johnson, L. J. P. Ketelsen, D. A. Ackerman, L. M. Zhang, M. S. Hybertsen, K. G. Glogovsky, C. W. Lentz, W. A. Asous, C. L. Reynolds, J. M. Geary, K. K. Kamath, C. W. Ebert, M. Park, G. J. Przybylek, R. E. Leibenguth, S. L. Broutin, J. W. Stayt, K. F. Dreyer, L. J. Peticolas, R. L. Hartman, and T. L. Koch, “Fully stabilized electroabsorption-modulated tunable DBR laser transmitter for long-haul optical communications,” IEEE J. Sel. Top. Quantum Electron. 7(2), 168–177 (2001).
[Crossref]

T. L. Koch, U. Koren, and B. I. Miller, “High performance tunable 1.5 μm InGaAs/InGaAsP multiple quantum well distributed Bragg reflector lasers,” Appl. Phys. Lett. 53(12), 1036–1038 (1988).
[Crossref]

Koren, U.

T. L. Koch, U. Koren, and B. I. Miller, “High performance tunable 1.5 μm InGaAs/InGaAsP multiple quantum well distributed Bragg reflector lasers,” Appl. Phys. Lett. 53(12), 1036–1038 (1988).
[Crossref]

Kramer, G.

Krimmel, H. G.

Krimmel, H.-G.

Kudo, K.

J. De Merlier, K. Mizutani, S. Sudo, K. Naniwae, Y. Furushima, S. Sato, K. Sato, and K. Kudo, “Full C-band external cavity wavelength tunable laser using a liquid-crystal-based tunable mirror,” IEEE Photon. Technol. Lett. 17(3), 681–683 (2005).
[Crossref]

Kyritsis, G.

G. Kyritsis and N. Zakhleniuk, “Self-consistent simulation model and enhancement of wavelength tuning of InGaAsP/InP multisection DBR laser diodes,” EEE J. Sel. Top. Quantum Electron. 19(5), 150331 (2013).

Lealman, I.

Lee, C. H.

Leibenguth, R. E.

J. E. Johnson, L. J. P. Ketelsen, D. A. Ackerman, L. M. Zhang, M. S. Hybertsen, K. G. Glogovsky, C. W. Lentz, W. A. Asous, C. L. Reynolds, J. M. Geary, K. K. Kamath, C. W. Ebert, M. Park, G. J. Przybylek, R. E. Leibenguth, S. L. Broutin, J. W. Stayt, K. F. Dreyer, L. J. Peticolas, R. L. Hartman, and T. L. Koch, “Fully stabilized electroabsorption-modulated tunable DBR laser transmitter for long-haul optical communications,” IEEE J. Sel. Top. Quantum Electron. 7(2), 168–177 (2001).
[Crossref]

Lentz, C. W.

J. E. Johnson, L. J. P. Ketelsen, D. A. Ackerman, L. M. Zhang, M. S. Hybertsen, K. G. Glogovsky, C. W. Lentz, W. A. Asous, C. L. Reynolds, J. M. Geary, K. K. Kamath, C. W. Ebert, M. Park, G. J. Przybylek, R. E. Leibenguth, S. L. Broutin, J. W. Stayt, K. F. Dreyer, L. J. Peticolas, R. L. Hartman, and T. L. Koch, “Fully stabilized electroabsorption-modulated tunable DBR laser transmitter for long-haul optical communications,” IEEE J. Sel. Top. Quantum Electron. 7(2), 168–177 (2001).
[Crossref]

Liang, S.

L. Q. Yu, H. T. Wang, D. Lu, S. Liang, C. Zhang, B. W. Pan, L. M. Zhang, and L. J. Zhao, “A widely tunable directly modulated dbr laser with high linearity,” IEEE Photonics J. 6(4), 1501308 (2014).

Lim, K. W.

K. H. Han, E. S. Son, H. Y. Choi, K. W. Lim, and Y. C. Chung, “Bidirectional WDM PON using light-emitting diodes spectrum-sliced with cyclic arrayed-waveguide grating,” IEEE Photon. Technol. Lett. 16(10), 2380–2382 (2004).
[Crossref]

Lin, G. R.

Y. C. Su, Y. C. Chi, H. Y. Chen, and G. R. Lin, “Using self-feedback controlled colorless Fabry-Perot laser diode for remote control free single-mode DWDM-PON transmission,” IEEE J. Quantum Electron. 50(8), 658–668 (2014).
[Crossref]

Lu, D.

L. Q. Yu, H. T. Wang, D. Lu, S. Liang, C. Zhang, B. W. Pan, L. M. Zhang, and L. J. Zhao, “A widely tunable directly modulated dbr laser with high linearity,” IEEE Photonics J. 6(4), 1501308 (2014).

Maxwell, G.

Miller, B. I.

T. L. Koch, U. Koren, and B. I. Miller, “High performance tunable 1.5 μm InGaAs/InGaAsP multiple quantum well distributed Bragg reflector lasers,” Appl. Phys. Lett. 53(12), 1036–1038 (1988).
[Crossref]

Mito, I.

S. Murata, I. Mito, and K. Kobayashi, “Tuning ranges for 1.5 μm wavelength tunable DBR lasers,” Electron. Lett. 24(10), 577–579 (1988).
[Crossref]

Mizutani, K.

J. De Merlier, K. Mizutani, S. Sudo, K. Naniwae, Y. Furushima, S. Sato, K. Sato, and K. Kudo, “Full C-band external cavity wavelength tunable laser using a liquid-crystal-based tunable mirror,” IEEE Photon. Technol. Lett. 17(3), 681–683 (2005).
[Crossref]

Moodie, D.

Moodie, D. G.

Mukherjee, B.

Murata, S.

S. Murata, I. Mito, and K. Kobayashi, “Tuning ranges for 1.5 μm wavelength tunable DBR lasers,” Electron. Lett. 24(10), 577–579 (1988).
[Crossref]

Murphy, E. J.

Naniwae, K.

J. De Merlier, K. Mizutani, S. Sudo, K. Naniwae, Y. Furushima, S. Sato, K. Sato, and K. Kudo, “Full C-band external cavity wavelength tunable laser using a liquid-crystal-based tunable mirror,” IEEE Photon. Technol. Lett. 17(3), 681–683 (2005).
[Crossref]

Naughton, A.

Nesset, D.

Ossieur, P.

Ougazzaden, A.

F. Delorme, G. Alibert, P. Boulet, S. Grosmaire, S. Slempkes, and A. Ougazzaden, “High reliability of high-power and widely tunable 1.55-μm distributed Bragg reflector lasers for WDM applications,” IEEE J. Sel. Top. Quantum Electron. 3(2), 607–614 (1997).
[Crossref]

Pan, B. W.

L. Q. Yu, H. T. Wang, D. Lu, S. Liang, C. Zhang, B. W. Pan, L. M. Zhang, and L. J. Zhao, “A widely tunable directly modulated dbr laser with high linearity,” IEEE Photonics J. 6(4), 1501308 (2014).

Park, H. J.

Park, H. L.

S.-B. Kim, J.-S. Sim, K. S. Kim, E.-D. Sim, S.-W. Ryu, and H. L. Park, “Selective-area MOVPE growth for 10Gbit/s electroabsorption modulator integrated with a tunable DBR laser,” J. Cryst. Growth 298, 672–675 (2007).
[Crossref]

Park, M.

J. E. Johnson, L. J. P. Ketelsen, D. A. Ackerman, L. M. Zhang, M. S. Hybertsen, K. G. Glogovsky, C. W. Lentz, W. A. Asous, C. L. Reynolds, J. M. Geary, K. K. Kamath, C. W. Ebert, M. Park, G. J. Przybylek, R. E. Leibenguth, S. L. Broutin, J. W. Stayt, K. F. Dreyer, L. J. Peticolas, R. L. Hartman, and T. L. Koch, “Fully stabilized electroabsorption-modulated tunable DBR laser transmitter for long-haul optical communications,” IEEE J. Sel. Top. Quantum Electron. 7(2), 168–177 (2001).
[Crossref]

Park, S. J.

Park, Y.

Peticolas, L. J.

J. E. Johnson, L. J. P. Ketelsen, D. A. Ackerman, L. M. Zhang, M. S. Hybertsen, K. G. Glogovsky, C. W. Lentz, W. A. Asous, C. L. Reynolds, J. M. Geary, K. K. Kamath, C. W. Ebert, M. Park, G. J. Przybylek, R. E. Leibenguth, S. L. Broutin, J. W. Stayt, K. F. Dreyer, L. J. Peticolas, R. L. Hartman, and T. L. Koch, “Fully stabilized electroabsorption-modulated tunable DBR laser transmitter for long-haul optical communications,” IEEE J. Sel. Top. Quantum Electron. 7(2), 168–177 (2001).
[Crossref]

Ponnampalam, L.

A. J. Ward, D. J. Robbins, G. Busico, E. Barton, L. Ponnampalam, J. P. Duck, N. D. Whitbread, P. J. Williams, D. C. J. Reid, A. C. Carter, and M. J. Wale, “Widely tunable DS-DBR laser with monolithically integrated SOA: design and performance,” IEEE J. Sel. Top. Quantum Electron. 11(1), 149–156 (2005).
[Crossref]

Ponzini, F.

Poulsen, H. N.

Poustie, A.

Presi, M.

Przybylek, G. J.

J. E. Johnson, L. J. P. Ketelsen, D. A. Ackerman, L. M. Zhang, M. S. Hybertsen, K. G. Glogovsky, C. W. Lentz, W. A. Asous, C. L. Reynolds, J. M. Geary, K. K. Kamath, C. W. Ebert, M. Park, G. J. Przybylek, R. E. Leibenguth, S. L. Broutin, J. W. Stayt, K. F. Dreyer, L. J. Peticolas, R. L. Hartman, and T. L. Koch, “Fully stabilized electroabsorption-modulated tunable DBR laser transmitter for long-haul optical communications,” IEEE J. Sel. Top. Quantum Electron. 7(2), 168–177 (2001).
[Crossref]

Raring, J. W.

Reid, D. C. J.

A. J. Ward, D. J. Robbins, G. Busico, E. Barton, L. Ponnampalam, J. P. Duck, N. D. Whitbread, P. J. Williams, D. C. J. Reid, A. C. Carter, and M. J. Wale, “Widely tunable DS-DBR laser with monolithically integrated SOA: design and performance,” IEEE J. Sel. Top. Quantum Electron. 11(1), 149–156 (2005).
[Crossref]

Reynolds, C. L.

J. E. Johnson, L. J. P. Ketelsen, D. A. Ackerman, L. M. Zhang, M. S. Hybertsen, K. G. Glogovsky, C. W. Lentz, W. A. Asous, C. L. Reynolds, J. M. Geary, K. K. Kamath, C. W. Ebert, M. Park, G. J. Przybylek, R. E. Leibenguth, S. L. Broutin, J. W. Stayt, K. F. Dreyer, L. J. Peticolas, R. L. Hartman, and T. L. Koch, “Fully stabilized electroabsorption-modulated tunable DBR laser transmitter for long-haul optical communications,” IEEE J. Sel. Top. Quantum Electron. 7(2), 168–177 (2001).
[Crossref]

Robbins, D. J.

A. J. Ward, D. J. Robbins, G. Busico, E. Barton, L. Ponnampalam, J. P. Duck, N. D. Whitbread, P. J. Williams, D. C. J. Reid, A. C. Carter, and M. J. Wale, “Widely tunable DS-DBR laser with monolithically integrated SOA: design and performance,” IEEE J. Sel. Top. Quantum Electron. 11(1), 149–156 (2005).
[Crossref]

Rogers, D.

Rohde, H.

Ryu, S.-W.

S.-B. Kim, J.-S. Sim, K. S. Kim, E.-D. Sim, S.-W. Ryu, and H. L. Park, “Selective-area MOVPE growth for 10Gbit/s electroabsorption modulator integrated with a tunable DBR laser,” J. Cryst. Growth 298, 672–675 (2007).
[Crossref]

Sato, K.

J. De Merlier, K. Mizutani, S. Sudo, K. Naniwae, Y. Furushima, S. Sato, K. Sato, and K. Kudo, “Full C-band external cavity wavelength tunable laser using a liquid-crystal-based tunable mirror,” IEEE Photon. Technol. Lett. 17(3), 681–683 (2005).
[Crossref]

Sato, S.

J. De Merlier, K. Mizutani, S. Sudo, K. Naniwae, Y. Furushima, S. Sato, K. Sato, and K. Kudo, “Full C-band external cavity wavelength tunable laser using a liquid-crystal-based tunable mirror,” IEEE Photon. Technol. Lett. 17(3), 681–683 (2005).
[Crossref]

Sim, E.-D.

S.-B. Kim, J.-S. Sim, K. S. Kim, E.-D. Sim, S.-W. Ryu, and H. L. Park, “Selective-area MOVPE growth for 10Gbit/s electroabsorption modulator integrated with a tunable DBR laser,” J. Cryst. Growth 298, 672–675 (2007).
[Crossref]

Sim, J.-S.

S.-B. Kim, J.-S. Sim, K. S. Kim, E.-D. Sim, S.-W. Ryu, and H. L. Park, “Selective-area MOVPE growth for 10Gbit/s electroabsorption modulator integrated with a tunable DBR laser,” J. Cryst. Growth 298, 672–675 (2007).
[Crossref]

Skogen, E. J.

Slempkes, S.

F. Delorme, G. Alibert, P. Boulet, S. Grosmaire, S. Slempkes, and A. Ougazzaden, “High reliability of high-power and widely tunable 1.55-μm distributed Bragg reflector lasers for WDM applications,” IEEE J. Sel. Top. Quantum Electron. 3(2), 607–614 (1997).
[Crossref]

Smith, D. W.

Smolorz, S.

Son, E. S.

S. Y. Kim, S. B. Jun, Y. Takushima, E. S. Son, and Y. C. Chung, “Enhanced performance of RSOA-based WDM PON by using Manchester coding,” J. Opt. Netw. 6(6), 624 (2007).
[Crossref]

K. H. Han, E. S. Son, H. Y. Choi, K. W. Lim, and Y. C. Chung, “Bidirectional WDM PON using light-emitting diodes spectrum-sliced with cyclic arrayed-waveguide grating,” IEEE Photon. Technol. Lett. 16(10), 2380–2382 (2004).
[Crossref]

Song, H.

Song, K. H.

Stayt, J. W.

J. E. Johnson, L. J. P. Ketelsen, D. A. Ackerman, L. M. Zhang, M. S. Hybertsen, K. G. Glogovsky, C. W. Lentz, W. A. Asous, C. L. Reynolds, J. M. Geary, K. K. Kamath, C. W. Ebert, M. Park, G. J. Przybylek, R. E. Leibenguth, S. L. Broutin, J. W. Stayt, K. F. Dreyer, L. J. Peticolas, R. L. Hartman, and T. L. Koch, “Fully stabilized electroabsorption-modulated tunable DBR laser transmitter for long-haul optical communications,” IEEE J. Sel. Top. Quantum Electron. 7(2), 168–177 (2001).
[Crossref]

Su, Y. C.

Y. C. Su, Y. C. Chi, H. Y. Chen, and G. R. Lin, “Using self-feedback controlled colorless Fabry-Perot laser diode for remote control free single-mode DWDM-PON transmission,” IEEE J. Quantum Electron. 50(8), 658–668 (2014).
[Crossref]

Sudo, S.

J. De Merlier, K. Mizutani, S. Sudo, K. Naniwae, Y. Furushima, S. Sato, K. Sato, and K. Kudo, “Full C-band external cavity wavelength tunable laser using a liquid-crystal-based tunable mirror,” IEEE Photon. Technol. Lett. 17(3), 681–683 (2005).
[Crossref]

Sysak, M. N.

Takushima, Y.

Townsend, P. D.

Wale, M. J.

A. J. Ward, D. J. Robbins, G. Busico, E. Barton, L. Ponnampalam, J. P. Duck, N. D. Whitbread, P. J. Williams, D. C. J. Reid, A. C. Carter, and M. J. Wale, “Widely tunable DS-DBR laser with monolithically integrated SOA: design and performance,” IEEE J. Sel. Top. Quantum Electron. 11(1), 149–156 (2005).
[Crossref]

Wang, H. T.

L. Q. Yu, H. T. Wang, D. Lu, S. Liang, C. Zhang, B. W. Pan, L. M. Zhang, and L. J. Zhao, “A widely tunable directly modulated dbr laser with high linearity,” IEEE Photonics J. 6(4), 1501308 (2014).

Ward, A. J.

A. J. Ward, D. J. Robbins, G. Busico, E. Barton, L. Ponnampalam, J. P. Duck, N. D. Whitbread, P. J. Williams, D. C. J. Reid, A. C. Carter, and M. J. Wale, “Widely tunable DS-DBR laser with monolithically integrated SOA: design and performance,” IEEE J. Sel. Top. Quantum Electron. 11(1), 149–156 (2005).
[Crossref]

Weber, J. P.

J. P. Weber, “Optimization of the carrier-induced effective index change in InGaAsP waveguides-application to tunable Bragg filters,” IEEE J. Quantum Electron. 30(8), 1801–1816 (1994).
[Crossref]

Whitbread, N. D.

A. J. Ward, D. J. Robbins, G. Busico, E. Barton, L. Ponnampalam, J. P. Duck, N. D. Whitbread, P. J. Williams, D. C. J. Reid, A. C. Carter, and M. J. Wale, “Widely tunable DS-DBR laser with monolithically integrated SOA: design and performance,” IEEE J. Sel. Top. Quantum Electron. 11(1), 149–156 (2005).
[Crossref]

Williams, P. J.

A. J. Ward, D. J. Robbins, G. Busico, E. Barton, L. Ponnampalam, J. P. Duck, N. D. Whitbread, P. J. Williams, D. C. J. Reid, A. C. Carter, and M. J. Wale, “Widely tunable DS-DBR laser with monolithically integrated SOA: design and performance,” IEEE J. Sel. Top. Quantum Electron. 11(1), 149–156 (2005).
[Crossref]

Wyatt, R.

Xin, Y.

Xing-Zhi, Q.

Yang, S.

Yu, J.

Yu, L. Q.

L. Q. Yu, H. T. Wang, D. Lu, S. Liang, C. Zhang, B. W. Pan, L. M. Zhang, and L. J. Zhao, “A widely tunable directly modulated dbr laser with high linearity,” IEEE Photonics J. 6(4), 1501308 (2014).

Zakhleniuk, N.

G. Kyritsis and N. Zakhleniuk, “Self-consistent simulation model and enhancement of wavelength tuning of InGaAsP/InP multisection DBR laser diodes,” EEE J. Sel. Top. Quantum Electron. 19(5), 150331 (2013).

Zhang, C.

L. Q. Yu, H. T. Wang, D. Lu, S. Liang, C. Zhang, B. W. Pan, L. M. Zhang, and L. J. Zhao, “A widely tunable directly modulated dbr laser with high linearity,” IEEE Photonics J. 6(4), 1501308 (2014).

Zhang, J.

Zhang, L. M.

L. Q. Yu, H. T. Wang, D. Lu, S. Liang, C. Zhang, B. W. Pan, L. M. Zhang, and L. J. Zhao, “A widely tunable directly modulated dbr laser with high linearity,” IEEE Photonics J. 6(4), 1501308 (2014).

J. E. Johnson, L. J. P. Ketelsen, D. A. Ackerman, L. M. Zhang, M. S. Hybertsen, K. G. Glogovsky, C. W. Lentz, W. A. Asous, C. L. Reynolds, J. M. Geary, K. K. Kamath, C. W. Ebert, M. Park, G. J. Przybylek, R. E. Leibenguth, S. L. Broutin, J. W. Stayt, K. F. Dreyer, L. J. Peticolas, R. L. Hartman, and T. L. Koch, “Fully stabilized electroabsorption-modulated tunable DBR laser transmitter for long-haul optical communications,” IEEE J. Sel. Top. Quantum Electron. 7(2), 168–177 (2001).
[Crossref]

Zhao, L. J.

L. Q. Yu, H. T. Wang, D. Lu, S. Liang, C. Zhang, B. W. Pan, L. M. Zhang, and L. J. Zhao, “A widely tunable directly modulated dbr laser with high linearity,” IEEE Photonics J. 6(4), 1501308 (2014).

Appl. Phys. Lett. (1)

T. L. Koch, U. Koren, and B. I. Miller, “High performance tunable 1.5 μm InGaAs/InGaAsP multiple quantum well distributed Bragg reflector lasers,” Appl. Phys. Lett. 53(12), 1036–1038 (1988).
[Crossref]

EEE J. Sel. Top. Quantum Electron. (1)

G. Kyritsis and N. Zakhleniuk, “Self-consistent simulation model and enhancement of wavelength tuning of InGaAsP/InP multisection DBR laser diodes,” EEE J. Sel. Top. Quantum Electron. 19(5), 150331 (2013).

Electron. Lett. (1)

S. Murata, I. Mito, and K. Kobayashi, “Tuning ranges for 1.5 μm wavelength tunable DBR lasers,” Electron. Lett. 24(10), 577–579 (1988).
[Crossref]

IEEE J. Quantum Electron. (2)

Y. C. Su, Y. C. Chi, H. Y. Chen, and G. R. Lin, “Using self-feedback controlled colorless Fabry-Perot laser diode for remote control free single-mode DWDM-PON transmission,” IEEE J. Quantum Electron. 50(8), 658–668 (2014).
[Crossref]

J. P. Weber, “Optimization of the carrier-induced effective index change in InGaAsP waveguides-application to tunable Bragg filters,” IEEE J. Quantum Electron. 30(8), 1801–1816 (1994).
[Crossref]

IEEE J. Sel. Top. Quantum Electron. (3)

A. J. Ward, D. J. Robbins, G. Busico, E. Barton, L. Ponnampalam, J. P. Duck, N. D. Whitbread, P. J. Williams, D. C. J. Reid, A. C. Carter, and M. J. Wale, “Widely tunable DS-DBR laser with monolithically integrated SOA: design and performance,” IEEE J. Sel. Top. Quantum Electron. 11(1), 149–156 (2005).
[Crossref]

J. E. Johnson, L. J. P. Ketelsen, D. A. Ackerman, L. M. Zhang, M. S. Hybertsen, K. G. Glogovsky, C. W. Lentz, W. A. Asous, C. L. Reynolds, J. M. Geary, K. K. Kamath, C. W. Ebert, M. Park, G. J. Przybylek, R. E. Leibenguth, S. L. Broutin, J. W. Stayt, K. F. Dreyer, L. J. Peticolas, R. L. Hartman, and T. L. Koch, “Fully stabilized electroabsorption-modulated tunable DBR laser transmitter for long-haul optical communications,” IEEE J. Sel. Top. Quantum Electron. 7(2), 168–177 (2001).
[Crossref]

F. Delorme, G. Alibert, P. Boulet, S. Grosmaire, S. Slempkes, and A. Ougazzaden, “High reliability of high-power and widely tunable 1.55-μm distributed Bragg reflector lasers for WDM applications,” IEEE J. Sel. Top. Quantum Electron. 3(2), 607–614 (1997).
[Crossref]

IEEE Photon. Technol. Lett. (2)

J. De Merlier, K. Mizutani, S. Sudo, K. Naniwae, Y. Furushima, S. Sato, K. Sato, and K. Kudo, “Full C-band external cavity wavelength tunable laser using a liquid-crystal-based tunable mirror,” IEEE Photon. Technol. Lett. 17(3), 681–683 (2005).
[Crossref]

K. H. Han, E. S. Son, H. Y. Choi, K. W. Lim, and Y. C. Chung, “Bidirectional WDM PON using light-emitting diodes spectrum-sliced with cyclic arrayed-waveguide grating,” IEEE Photon. Technol. Lett. 16(10), 2380–2382 (2004).
[Crossref]

IEEE Photonics J. (1)

L. Q. Yu, H. T. Wang, D. Lu, S. Liang, C. Zhang, B. W. Pan, L. M. Zhang, and L. J. Zhao, “A widely tunable directly modulated dbr laser with high linearity,” IEEE Photonics J. 6(4), 1501308 (2014).

J. Cryst. Growth (1)

S.-B. Kim, J.-S. Sim, K. S. Kim, E.-D. Sim, S.-W. Ryu, and H. L. Park, “Selective-area MOVPE growth for 10Gbit/s electroabsorption modulator integrated with a tunable DBR laser,” J. Cryst. Growth 298, 672–675 (2007).
[Crossref]

J. Lightwave Technol. (6)

S. J. Park, C. H. Lee, K. T. Jeong, H. J. Park, J. G. Ahn, and K. H. Song, “Fiber-to-the-home services based on wavelength-division-multiplexing passive optical network,” J. Lightwave Technol. 22(11), 2582–2591 (2004).
[Crossref]

J. Buus and E. J. Murphy, “Tunable lasers in optical networks,” J. Lightwave Technol. 24(1), 5–11 (2006).
[Crossref]

J. W. Raring, L. A. Johansson, E. J. Skogen, M. N. Sysak, H. N. Poulsen, S. P. DenBaars, and L. A. Coldren, “40-Gb/s widely tunable low-drive-voltage electroabsorption-modulated transmitters,” J. Lightwave Technol. 25(1), 239–248 (2007).
[Crossref]

J. Zhang and N. Ansari, “Design of WDM PON with tunable lasers: the upstream scenario,” J. Lightwave Technol. 28(2), 228–236 (2010).
[Crossref]

P. Ossieur, C. Antony, A. M. Clarke, A. Naughton, H.-G. Krimmel, Y. Chang, C. Ford, A. Borghesani, D. G. Moodie, A. Poustie, R. Wyatt, B. Harmon, I. Lealman, G. Maxwell, D. Rogers, D. W. Smith, D. Nesset, R. P. Davey, and P. D. Townsend, “A 135-km 8192-split carrier distributed DWDM-TDMA PON with 2×32×10 Gb/s capacity,” J. Lightwave Technol. 29(4), 463–474 (2011).
[Crossref]

P. Ossieur, C. Antony, A. Naughton, A. M. Clarke, H. G. Krimmel, Y. Xin, Q. Xing-Zhi, C. Ford, A. Borghesani, D. Moodie, A. Poustie, R. Wyatt, B. Harmon, I. Lealman, G. Maxwell, D. Rogers, D. W. Smith, S. Smolorz, H. Rohde, D. Nesset, R. P. Davey, and P. D. Townsend, “Demonstration of a 32×512 Split, 100 Km reach,2×32×10 Gb/s hybrid DWDM-TDMA PON using tunable external cavity lasers in the ONUs,” J. Lightwave Technol. 29(24), 3705–3718 (2011).
[Crossref]

J. Opt. Commun. Netw. (2)

J. Opt. Netw. (2)

Other (5)

G. Talli, C. W. Chow, P. Townsend, R. Davey, T. D. Ridder, X. Z. Qiu, P. Ossieur, H. G. Krimmel, D. Smith, I. Lealman, A. Poustie, S. Randel, and H. Rohde, “Integrated metro and access network: PIEMAN,” in Proc. 12th Eur. Conf. Netw. Opt. Commun. 493–500(2007).

N. Okada, T. Uesugi, A. Matsusue, T. Fujita, S. Takagi, T. Hatta, A. Sugitatsu, and H. Watanabe, “Cost-effective 10.7Gb/s cooled TOSA employing rectangular TO-CAN package operating up to 90 ◦C,” in Optical Fiber Commun. Conf. paper JWA38 (2010).

K. Joon-Young, Y. Sang-Hwa, M. Sang-Rok, K. Dong Churl, and L. Chang-Hee, “400Gb/s (40×10 Gb/s) ASE injection seeded WDM-PON based on SOA-REAM,” in Optical Fiber Commun. Conf. paper OW4D (2013).

D. Anthon, J. D. Berger, and A. Tselikov, “C+L band MEMS tunable external cavity semiconductor laser,” in Optical Fiber Commun. Conf. paper WL2 (2004).

J. E. Johnson, L. J. P. Ketelsen, J. M. Geary, F. S. Walters, J. M. Freund, M. S. Hybertsen, K. G. Glogovsky, and C. W. Lentz, “10 Gb/s transmission using an electroabsorption-modulated distributed Bragg reflector laser with integrated semiconductor optical amplifier,” in Optical Fiber Commun. Conf. paper TuB3 (2001).
[Crossref]

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (8)

Fig. 1
Fig. 1 Schematic wafer structure (upper) and an optical microscope image (lower) of the device.
Fig. 2
Fig. 2 PL spectra of the materials of different sections of the device.
Fig. 3
Fig. 3 (a) The light output power as functions of the gain current and SOA current at 25 °C, (b) The light output power as a function of the SOA current and temperature with a gain current of 140 mA, (c) The effect of the SOA injection on the property of the spectrum of the device at 40 oC. The DBR current is 0 mA.
Fig. 4
Fig. 4 (a) Laser emission wavelength and the corresponding SMSR (25 °C) as functions of the inject current of the DBR section and temperature. (b) The typical optical spectra obtained from the device. (c) The effect of the current injection into the DBR section on the output power. The currents of the gain and SOA sections are 100 and 150 mA, respectively.
Fig. 5
Fig. 5 The static extinction curves of the integrated EAM at 40 °C (a) and 25 °C (b).
Fig. 6
Fig. 6 The electrical to optical response of the modulator.
Fig. 7
Fig. 7 The far field patterns observed from the EAM facet.
Fig. 8
Fig. 8 Laser emission wavelength and the corresponding SMSR (25 °C) as functions of the inject current of the DBR section and temperature. The length of the DBR section is 170 µm.

Metrics