Expand this Topic clickable element to expand a topic
Skip to content
Optica Publishing Group

Ring Pearcey vortex beam dynamics through atmospheric turbulence

Not Accessible

Your library or personal account may give you access

Abstract

The subject of free space optical communication (FSO) with an optical beam carrying orbital angular momentum (OAM) has attracted a great deal of research attention over the last two decades. Efforts to understand, model, and execute communication links through a turbulent atmosphere with OAM beams have gained particular importance. In this regard, different types of shape-preserving beams, which can withstand turbulences of varying strengths, have been proposed and studied. In this paper, we present a numerical investigation of the propagation characteristics of a ring Pearcey vortex beam (PVB) through turbulent atmosphere. The study details moderate as well as strong atmospheric turbulences. The modified von Kármán model has been relied on to model random phase screen. In moderate turbulence, the ring PVB preserved its singularity. In strong turbulence, the ring PVB preserved its singularity for short propagation distances but lost its singularity at longer propagation distances. We found that, upon increasing the value of a topological charge ($l$), the aperture averaged scintillation index (SI) increases. We calculated the aperture averaged SI for different truncation factors and noticed that the ring PVB with a truncation factor $b = 0.1$ performed better in stronger turbulence. In moderate turbulence, the aperture averaged SI performed better for shorter propagation distances and relatively larger truncation factors. Further, we calculated the aperture averaged SI for a spatially chirped ring PVB, finding that aperture averaged SI improved largely for the negatively chirped ring PVB. Further, on comparing the aperture averaged SI of the ring PVB and ring Airy vortex beam (AVB), it has been noticed that, in strong turbulence, the ring PVB exhibited better aperture averaged SI. Additionally, we have calculated the beam wander for the ring PVB and ring AVB, finding that the ring PVB demonstrates better beam wander.

© 2023 Optica Publishing Group

Full Article  |  PDF Article
More Like This
Propagation characteristics of a ring Airy vortex beam in slant atmospheric turbulence

Kangle Yong, Shanfa Tang, Xiaomin Yang, and Rongzhu Zhang
J. Opt. Soc. Am. B 38(5) 1510-1517 (2021)

Changes in orbital-angular-momentum modes of a propagated vortex Gaussian beam through weak-to-strong atmospheric turbulence

Chunyi Chen, Huamin Yang, Shoufeng Tong, and Yan Lou
Opt. Express 24(7) 6959-6975 (2016)

Unveiling detection probability for multi-Gaussian correlated anomalous vortex modes in maritime atmospheric turbulence

Hassan T. Al-Ahsab, Mingjian Cheng, Lixin Guo, Yuancong Cao, and ShuaiLing Wang
J. Opt. Soc. Am. A 40(12) 2277-2286 (2023)

Data availability

Data underlying the results presented in this paper are not publicly available at this time but may be obtained from the authors upon reasonable request.

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Figures (11)

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Equations (15)

You do not have subscription access to this journal. Equations are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Select as filters


Select Topics Cancel
© Copyright 2024 | Optica Publishing Group. All rights reserved, including rights for text and data mining and training of artificial technologies or similar technologies.