Expand this Topic clickable element to expand a topic
Skip to content
Optica Publishing Group

Optical trapping with higher-order frozen waves

Not Accessible

Your library or personal account may give you access

Abstract

In this work, we optically trap micro-particles with higher-order frozen waves using holographic optical tweezers. Frozen waves are diffraction-resistant optical beams obtained by superposing co-propagating Bessel beams with the same frequency and order, obtaining efficient modeling of its shape. Based on this, we developed a holographic optical tweezers system for the generation of frozen waves, and with this, it was possible to create traps in a stable way for the trapping and guiding of micro-particles in the transverse plane. The experimental results show that it is possible to obtain an excellent stability condition for optical trapping using higher-order frozen waves. These results indicate that frozen waves are promising for optical trapping and guiding of particles, which may be useful in various applications such as biological research, atomic physics, and optical manipulations using structured light with orbital angular momentum.

© 2023 Optica Publishing Group

Full Article  |  PDF Article
More Like This
Experimental optical trapping with frozen waves

Rafael A. B. Suarez, Leonardo A. Ambrosio, Antonio A. R. Neves, Michel Zamboni-Rached, and Marcos R. R. Gesualdi
Opt. Lett. 45(9) 2514-2517 (2020)

Analytical approach of ordinary frozen waves for optical trapping and micromanipulation

Leonardo André Ambrosio and Michel Zamboni-Rached
Appl. Opt. 54(10) 2584-2593 (2015)

Zeroth-order continuous vector frozen waves for light scattering: exact multipole expansion in the generalized Lorenz–Mie theory

Leonardo André Ambrosio, Michel Zamboni Rached, and Gérard Gouesbet
J. Opt. Soc. Am. B 36(1) 81-89 (2019)

Supplementary Material (2)

NameDescription
Visualization 1       Experimental optical trapping of micro-particles in the plane using higher-order FW.
Visualization 2       Trapping and guiding in the transverse plane of micro-particles (orange circle) using higher-order FWs (nu = 0, 1, 2, 3), from computer-generated dynamic holograms.

Data availability

Data underlying the results presented in this paper are not publicly available at this time but may be obtained from the authors upon reasonable request.

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Figures (9)

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Equations (10)

You do not have subscription access to this journal. Equations are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Select as filters


Select Topics Cancel
© Copyright 2024 | Optica Publishing Group. All rights reserved, including rights for text and data mining and training of artificial technologies or similar technologies.