Expand this Topic clickable element to expand a topic
Skip to content
Optica Publishing Group

Optimization of a GaAs/AlGaAs p-i-n heterojunction nanowire solar cell for improved optical and electrical properties

Not Accessible

Your library or personal account may give you access

Abstract

GaAs/AlGaAs based nanowires are promising candidates for photovoltaic applications due to their high absorption coefficient, low surface reflection, and efficient collection of photogenerated carriers. This study focuses on optimizing the performance of p-i-n GaAs/AlGaAs nanowire solar cell arrays having a radial junction using optoelectronic simulations. The research investigates the optimal doping for the GaAs core and AlGaAs shell, as well as the impact of shell thickness and junction positions on solar cell performance. Additionally, the study examines the effect of various surface effects, including the presence of surface traps, surface recombination velocities, and associated lifetime degradation. Our studies find that a high doping density for the shell and core region is crucial for achieving an appropriate band configuration and carrier extraction. It also highlights that having a larger doping density is more important than having a larger lifetime. Finally, the research examines the effect of different aluminum compositions on photogeneration inside the nanowire and shows that having a high aluminum composition can confine most photogeneration to inner GaAs regions, potentially allowing for thicker AlGaAs shells, which can efficiently prevent surface recombination.

© 2023 Optica Publishing Group

Full Article  |  PDF Article
More Like This
Review on photonic properties of nanowires for photovoltaics [Invited]

S. Mokkapati and C. Jagadish
Opt. Express 24(15) 17345-17358 (2016)

Direct electrical contact of slanted ITO film on axial p-n junction silicon nanowire solar cells

Ya-Ju Lee, Yung-Chi Yao, and Chia-Hao Yang
Opt. Express 21(S1) A7-A14 (2013)

Performance-limiting factors for GaAs-based single nanowire photovoltaics

Xufeng Wang, Mohammad Ryyan Khan, Mark Lundstrom, and Peter Bermel
Opt. Express 22(S2) A344-A358 (2014)

Data availability

Data underlying the results presented in this paper are not publicly available at this time but may be obtained from the authors upon reasonable request.

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Figures (16)

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Tables (1)

You do not have subscription access to this journal. Article tables are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Equations (3)

You do not have subscription access to this journal. Equations are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Select as filters


Select Topics Cancel
© Copyright 2024 | Optica Publishing Group. All rights reserved, including rights for text and data mining and training of artificial technologies or similar technologies.