Abstract

The macroscopic electromagnetic (EM) energy–momentum tensor is one of the most important quantities characterizing the propagation and interaction of light in materials. In recent years, while exotic optical effects in various kinds of bianisotropic materials have been discovered, there still lacks a rigorous analysis of the energy and momentum of EM fields in such general cases. In this paper, using Noether’s theorem and the “Abrahamization” procedure, we obtain generalized Minkowski and Abraham EM energy–momentum tensors, applicable for both arbitrary time-dependent real EM fields and complex-valued analytic signals, in generic lossless bianisotropic media with frequency dispersion. The frequency dispersion of the materials modifies the expressions of EM energy density and Minkowski momentum, making them different from their familiar forms in nondispersive media. Our results reveal that the generalized Minkowski momenta for both real fields and analytic signals are conserved in source-free homogeneous media, while the Abraham momenta, characterizing the centroid motion of light, can change over time, which leads to the counterintuitive phenomenon that wave packets can travel along curved trajectories even in homogeneous bianisotropic media. We also show that the energy–momentum tensor for analytic signals derived from the action principle directly gives the conservation law of time-averaged fields and hence can describe the envelope evolution of waves in quasi-monochromatic approximation.

© 2021 Optical Society of America

Full Article  |  PDF Article
More Like This
On the origin of photon mass, momentum, and energy in a dielectric medium [Invited]

Nikolai B. Chichkov and Boris N. Chichkov
Opt. Mater. Express 11(8) 2722-2729 (2021)

Electromagnetic stress tensor in ponderable media

Masud Mansuripur
Opt. Express 16(8) 5193-5198 (2008)

Momentum of Light in a Dielectric Medium

Peter W. Milonni and Robert W. Boyd
Adv. Opt. Photon. 2(4) 519-553 (2010)

References

You do not have subscription access to this journal. Citation lists with outbound citation links are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Data Availability

Data underlying the results presented in this paper are not publicly available at this time but may be obtained from the authors upon reasonable request.

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Figures (2)

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Equations (105)

You do not have subscription access to this journal. Equations are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Metrics