Abstract

With its applications in science and engineering, supercontinuum (SC) generation is a phenomenon widely studied in nonlinear fiber optics. The SC spectral properties are not difficult to measure, except those related to time. Fortunately, machine learning can help predict the time behavior of various nonlinear optics phenomena using spectral characteristics. In this study, supervised machine learning tools are used to evaluate the prediction accuracy of the soliton properties in a noisy environment. A neural network (NN) and a convolutional neural network (CNN) are implemented to assess the performance of these techniques in relation to predicting soliton properties when noise is included in a laser that pumps a nonlinear fiber optics. We conclude that the CNN shows better performance compared with NN, as it involves more data with the same quantity of simulations conducted in both cases, whereas NN can better predict the target in the absence of noise.

© 2020 Optical Society of America

Full Article  |  PDF Article
More Like This
Convolutional neural network-based approach to estimate bulk optical properties in diffuse optical tomography

Sohail Sabir, Sanghoon Cho, Yejin Kim, Rizza Pua, Duchang Heo, Kee Hyun Kim, Youngwook Choi, and Seungryong Cho
Appl. Opt. 59(5) 1461-1470 (2020)

Convolutional Neural Network-Based Optical Performance Monitoring for Optical Transport Networks

Takahito Tanimura, Takeshi Hoshida, Tomoyuki Kato, Shigeki Watanabe, and Hiroyuki Morikawa
J. Opt. Commun. Netw. 11(1) A52-A59 (2019)

Convolutional neural network applied for nanoparticle classification using coherent scatterometry data

D. Kolenov, D. Davidse, J. Le Cam, and S. F. Pereira
Appl. Opt. 59(27) 8426-8433 (2020)

References

You do not have subscription access to this journal. Citation lists with outbound citation links are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Figures (7)

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Tables (2)

You do not have subscription access to this journal. Article tables are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Equations (2)

You do not have subscription access to this journal. Equations are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Metrics