Abstract

Supercontinuum (SC) generation via femtosecond (fs) pumping in all-normal-dispersion (ANDi) fiber is predicted to offer completely coherent broadening mechanisms, potentially allowing for substantially reduced noise levels in comparison to those obtained when operating in the anomalous dispersion regime. However, previous studies of SC noise typically treat only the quantum noise, typically in the form of one-photon-per-mode noise, and do not consider other technical noise contributions, such as the stability of the pump laser, which become important when the broadening mechanism itself is coherent. In this work, we discuss the influence of the amplitude and pulse length noise of the pump laser, both added separately and combined. We show that for a typical mode-locked laser, in which the peak power and pulse duration are anticorrelated, their combined impact on the SC noise is generally smaller than in isolation. This means that the supercontinuum noise is smaller than the noise of the mode-locked pump laser itself, a fact that was recently observed in experiments but not explained. Our detailed numerical analysis shows that the coherence of ANDi SC generation is considerably reduced on the spectral edges when realistic pump laser noise levels are taken into account.

© 2019 Optical Society of America

Full Article  |  PDF Article
More Like This
Limits of coherent supercontinuum generation in normal dispersion fibers

Alexander M. Heidt, James S. Feehan, Jonathan H. V. Price, and Thomas Feurer
J. Opt. Soc. Am. B 34(4) 764-775 (2017)

Step-index fluoride fibers with all-normal dispersion for coherent mid-infrared supercontinuum generation

Yu Li, Longfei Wang, Meisong Liao, YinYao Liu, Xia Li, Wanjun Bi, Fei Yu, Long Zhang, Yiguang Jiang, Zaiyang Wang, Longfei Zhang, Chengfeng Yuan, and Lili Hu
J. Opt. Soc. Am. B 36(11) 2972-2980 (2019)

References

  • View by:
  • |
  • |
  • |

  1. A. M. Heidt, A. Hartung, G. W. Bosman, P. Krok, E. G. Rohwer, H. Schwoerer, and H. Bartelt, “Coherent octave spanning near-infrared and visible supercontinuum generation in all-normal dispersion photonic crystal fibers,” Opt. Express 19, 3775–3787 (2011).
    [Crossref]
  2. A. Hartung, A. Heidt, and H. Bartelt, “Design of all-normal dispersion microstructured optical fibers for pulse-preserving supercontinuum generation,” Opt. Express 19, 7742–7749 (2011).
    [Crossref]
  3. L. Liu, T. Cheng, K. Nagasaka, H. Tong, G. Qin, T. Suzuki, and Y. Ohishi, “Coherent mid-infrared supercontinuum generation in all-solid chalcogenide microstructured fibers with all-normal dispersion,” Opt. Lett. 41, 392–395 (2016).
    [Crossref]
  4. R. Alfano, The Supercontinuum Laser Source, 3rd ed. (Springer, 2016).
  5. U. Møller and O. Bang, “Intensity noise in normal-pumped picoseconds supercontinuum generation, where higher-order Raman lines cross into the anomalous dispersion regime,” Electron. Lett. 49, 63–65 (2013).
    [Crossref]
  6. M. Maria, I. B. Gonzalo, T. Feuchter, M. Denninger, P. M. Moselund, L. Leick, O. Bang, and A. Podoleanu, “Q-switch-pumped supercontinuum for ultra-high resolution optical coherence tomography,” Opt. Lett. 42, 4744–4747 (2017).
    [Crossref]
  7. T. Udem, R. Holzwarth, and T. Hänsch, “Optical frequency metrology,” Nature 416, 233–237 (2002).
    [Crossref]
  8. M. K. Dasa, C. Markos, M. Maria, C. R. Petersen, P. M. Moselund, and O. Bang, “High-pulse energy supercontinuum laser for high-resolution spectroscopic photoacoustic imaging of lipids in the 1650–1850  nm region,” Biomed. Opt. Express 9, 1762–1770 (2018).
    [Crossref]
  9. C. R. Petersen, N. Prtljaga, M. Farries, J. Ward, B. Napier, G. R. Lloyd, J. Nallala, N. Stone, and O. Bang, “Mid-infrared multispectral tissue imaging using a chalcogenide fiber supercontinuum source,” Opt. Lett. 43, 999–1002 (2018).
    [Crossref]
  10. N. M. Israelsen, M. Maria, M. Mogensen, S. Bojesen, M. Jensen, M. Haedersdal, A. Podoleanu, and O. Bang, “The value of ultrahigh resolution OCT in dermatology—delineating the dermo-epidermal junction, capillaries in the dermal papillae and vellus hairs,” Biomed. Opt. Express 9, 2240–2265 (2018).
    [Crossref]
  11. B. Povazay, K. Bizheva, A. Unterhuber, B. Hermann, H. Sattmann, A. F. Fercher, W. Drexler, A. Apolonski, W. J. Wadsworth, J. C. Knight, P. St.J. Russell, M. Vetterlein, and E. Scherzer, “Submicrometer axial resolution optical coherence tomography,” Opt. Lett. 27, 1800–1802 (2002).
    [Crossref]
  12. A. M. Heidt, J. S. Feehan, J. H. V. Price, and T. Feurer, “Limits of coherent supercontinuum generation in normal dispersion fibers,” J. Opt. Soc. Am. B 34, 764–775 (2017).
    [Crossref]
  13. C. Finot, B. Kibler, L. Provost, and S. Wabnitz, “Beneficial impact of wave-breaking for coherent continuum formation in normally dispersive nonlinear fibers,” J. Opt. Soc. Am. B 25, 1938–1948(2008).
    [Crossref]
  14. I. Gonzalo, R. Engelsholm, M. Sørensen, and O. Bang, “Polarization noise places severe constraints on coherence of all-normal dispersion femtosecond supercontinuum generation,” Sci. Rep. 8, 6579 (2018).
    [Crossref]
  15. F. Li, Q. Li, J. Yuan, and P. K. A. Wai, “Highly coherent supercontinuum generation with picosecond pulses by using self-similar compression,” Opt. Express 22, 27339–27354 (2014).
    [Crossref]
  16. M. H. Frosz, O. Bang, and A. Bjarklev, “Soliton collision and Raman gain regimes in continuous-wave pumped supercontinuum generation,” Opt. Express 14, 9391–9407 (2006).
    [Crossref]
  17. A. Mussot, E. Lantz, H. Maillotte, T. Sylvestre, C. Finot, and S. Pitois, “Spectral broadening of a partially coherent CW laser beam in single-mode optical fibers,” Opt. Express 12, 2838–2843 (2004).
    [Crossref]
  18. S. T. Sørensen, C. Larsen, U. Møller, P. M. Moselund, C. L. Thomsen, and O. Bang, “The role of phase coherence in seeded supercontinuum generation,” Opt. Express 20, 22886–22894 (2012).
    [Crossref]
  19. Z. Zhu and T. G. Brown, “Polarization properties of supercontinuum spectra generated in birefringent photonic crystal fibers,” J. Opt. Soc. Am. B 21, 249–257 (2004).
    [Crossref]
  20. J. M. Dudley, G. Genty, and S. Coen, “Supercontinuum generation in photonic crystal fiber,” Rev. Mod. Phys. 78, 1135–1184 (2006).
    [Crossref]
  21. J. M. Dudley and S. Coen, “Coherence properties of supercontinuum spectra generated in photonic crystal and tapered optical fibers,” Opt. Lett. 27, 1180–1182 (2002).
    [Crossref]
  22. M. H. Frosz, “Validation of input-noise model for simulations of supercontinuum generation and rogue waves,” Opt. Express 18, 14778–14787 (2010).
    [Crossref]
  23. K. L. Corwin, N. R. Newbury, J. M. Dudley, S. Coen, S. A. Diddams, B. R. Washburn, K. Weber, and R. S. Windeler, “Fundamental amplitude noise limitations to supercontinuum spectra generated in a microstructured fiber,” Appl. Phys. B 77, 269–277 (2003).
    [Crossref]
  24. P. D. Drummond and J. F. Corney, “Quantum noise in optical fibers. I. Stochastic equations,” J. Opt. Soc. Am. B 18, 139–152 (2001).
    [Crossref]
  25. J. F. Corney and P. D. Drummond, “Quantum noise in optical fibers. II. Raman jitter in soliton communications,” J. Opt. Soc. Am. B 18, 153–161 (2001).
    [Crossref]
  26. R. G. Smith, “Optical power handling capacity of low loss optical fibers as determined by stimulated Raman and Brillouin scattering,” Appl. Opt. 11, 2489–2494 (1972).
    [Crossref]
  27. U. Møller, S. T. Sørensen, C. Jakobsen, J. Johansen, P. M. Moselund, C. L. Thomsen, and O. Bang, “Power dependence of supercontinuum noise in uniform and tapered PCFs,” Opt. Express 20, 2851–2857 (2012).
    [Crossref]
  28. S. Rao, R. Engelsholm, I. Gonzalo, B. Zhou, P. Bowen, P. Moselund, M. Bache, and O. Bang, “Ultra-low noise supercontinuum generation with flat near-zero normal dispersion fiber,” arXiv:1812.03877 (2018).
  29. I. Gonzalo and O. Bang, “Role of the Raman gain in the noise dynamics of all-normal dispersion silica fiber supercontinuum generation,” J. Opt. Soc. Am. B 35, 2102–2110 (2018).
    [Crossref]
  30. D. Buccollero, H. Steffensen, H. Ebendorff-Heidepriem, T. M. Monro, and O. Bang, “Midinfrared optical rogue waves in soft glass photonic crystal fiber,” Opt. Express 19, 17973–17978 (2011).
    [Crossref]

2018 (5)

2017 (2)

2016 (1)

2014 (1)

2013 (1)

U. Møller and O. Bang, “Intensity noise in normal-pumped picoseconds supercontinuum generation, where higher-order Raman lines cross into the anomalous dispersion regime,” Electron. Lett. 49, 63–65 (2013).
[Crossref]

2012 (2)

2011 (3)

2010 (1)

2008 (1)

2006 (2)

M. H. Frosz, O. Bang, and A. Bjarklev, “Soliton collision and Raman gain regimes in continuous-wave pumped supercontinuum generation,” Opt. Express 14, 9391–9407 (2006).
[Crossref]

J. M. Dudley, G. Genty, and S. Coen, “Supercontinuum generation in photonic crystal fiber,” Rev. Mod. Phys. 78, 1135–1184 (2006).
[Crossref]

2004 (2)

2003 (1)

K. L. Corwin, N. R. Newbury, J. M. Dudley, S. Coen, S. A. Diddams, B. R. Washburn, K. Weber, and R. S. Windeler, “Fundamental amplitude noise limitations to supercontinuum spectra generated in a microstructured fiber,” Appl. Phys. B 77, 269–277 (2003).
[Crossref]

2002 (3)

2001 (2)

1972 (1)

Alfano, R.

R. Alfano, The Supercontinuum Laser Source, 3rd ed. (Springer, 2016).

Apolonski, A.

Bache, M.

S. Rao, R. Engelsholm, I. Gonzalo, B. Zhou, P. Bowen, P. Moselund, M. Bache, and O. Bang, “Ultra-low noise supercontinuum generation with flat near-zero normal dispersion fiber,” arXiv:1812.03877 (2018).

Bang, O.

I. Gonzalo and O. Bang, “Role of the Raman gain in the noise dynamics of all-normal dispersion silica fiber supercontinuum generation,” J. Opt. Soc. Am. B 35, 2102–2110 (2018).
[Crossref]

I. Gonzalo, R. Engelsholm, M. Sørensen, and O. Bang, “Polarization noise places severe constraints on coherence of all-normal dispersion femtosecond supercontinuum generation,” Sci. Rep. 8, 6579 (2018).
[Crossref]

N. M. Israelsen, M. Maria, M. Mogensen, S. Bojesen, M. Jensen, M. Haedersdal, A. Podoleanu, and O. Bang, “The value of ultrahigh resolution OCT in dermatology—delineating the dermo-epidermal junction, capillaries in the dermal papillae and vellus hairs,” Biomed. Opt. Express 9, 2240–2265 (2018).
[Crossref]

M. K. Dasa, C. Markos, M. Maria, C. R. Petersen, P. M. Moselund, and O. Bang, “High-pulse energy supercontinuum laser for high-resolution spectroscopic photoacoustic imaging of lipids in the 1650–1850  nm region,” Biomed. Opt. Express 9, 1762–1770 (2018).
[Crossref]

C. R. Petersen, N. Prtljaga, M. Farries, J. Ward, B. Napier, G. R. Lloyd, J. Nallala, N. Stone, and O. Bang, “Mid-infrared multispectral tissue imaging using a chalcogenide fiber supercontinuum source,” Opt. Lett. 43, 999–1002 (2018).
[Crossref]

M. Maria, I. B. Gonzalo, T. Feuchter, M. Denninger, P. M. Moselund, L. Leick, O. Bang, and A. Podoleanu, “Q-switch-pumped supercontinuum for ultra-high resolution optical coherence tomography,” Opt. Lett. 42, 4744–4747 (2017).
[Crossref]

U. Møller and O. Bang, “Intensity noise in normal-pumped picoseconds supercontinuum generation, where higher-order Raman lines cross into the anomalous dispersion regime,” Electron. Lett. 49, 63–65 (2013).
[Crossref]

S. T. Sørensen, C. Larsen, U. Møller, P. M. Moselund, C. L. Thomsen, and O. Bang, “The role of phase coherence in seeded supercontinuum generation,” Opt. Express 20, 22886–22894 (2012).
[Crossref]

U. Møller, S. T. Sørensen, C. Jakobsen, J. Johansen, P. M. Moselund, C. L. Thomsen, and O. Bang, “Power dependence of supercontinuum noise in uniform and tapered PCFs,” Opt. Express 20, 2851–2857 (2012).
[Crossref]

D. Buccollero, H. Steffensen, H. Ebendorff-Heidepriem, T. M. Monro, and O. Bang, “Midinfrared optical rogue waves in soft glass photonic crystal fiber,” Opt. Express 19, 17973–17978 (2011).
[Crossref]

M. H. Frosz, O. Bang, and A. Bjarklev, “Soliton collision and Raman gain regimes in continuous-wave pumped supercontinuum generation,” Opt. Express 14, 9391–9407 (2006).
[Crossref]

S. Rao, R. Engelsholm, I. Gonzalo, B. Zhou, P. Bowen, P. Moselund, M. Bache, and O. Bang, “Ultra-low noise supercontinuum generation with flat near-zero normal dispersion fiber,” arXiv:1812.03877 (2018).

Bartelt, H.

Bizheva, K.

Bjarklev, A.

Bojesen, S.

Bosman, G. W.

Bowen, P.

S. Rao, R. Engelsholm, I. Gonzalo, B. Zhou, P. Bowen, P. Moselund, M. Bache, and O. Bang, “Ultra-low noise supercontinuum generation with flat near-zero normal dispersion fiber,” arXiv:1812.03877 (2018).

Brown, T. G.

Buccollero, D.

Cheng, T.

Coen, S.

J. M. Dudley, G. Genty, and S. Coen, “Supercontinuum generation in photonic crystal fiber,” Rev. Mod. Phys. 78, 1135–1184 (2006).
[Crossref]

K. L. Corwin, N. R. Newbury, J. M. Dudley, S. Coen, S. A. Diddams, B. R. Washburn, K. Weber, and R. S. Windeler, “Fundamental amplitude noise limitations to supercontinuum spectra generated in a microstructured fiber,” Appl. Phys. B 77, 269–277 (2003).
[Crossref]

J. M. Dudley and S. Coen, “Coherence properties of supercontinuum spectra generated in photonic crystal and tapered optical fibers,” Opt. Lett. 27, 1180–1182 (2002).
[Crossref]

Corney, J. F.

Corwin, K. L.

K. L. Corwin, N. R. Newbury, J. M. Dudley, S. Coen, S. A. Diddams, B. R. Washburn, K. Weber, and R. S. Windeler, “Fundamental amplitude noise limitations to supercontinuum spectra generated in a microstructured fiber,” Appl. Phys. B 77, 269–277 (2003).
[Crossref]

Dasa, M. K.

Denninger, M.

Diddams, S. A.

K. L. Corwin, N. R. Newbury, J. M. Dudley, S. Coen, S. A. Diddams, B. R. Washburn, K. Weber, and R. S. Windeler, “Fundamental amplitude noise limitations to supercontinuum spectra generated in a microstructured fiber,” Appl. Phys. B 77, 269–277 (2003).
[Crossref]

Drexler, W.

Drummond, P. D.

Dudley, J. M.

J. M. Dudley, G. Genty, and S. Coen, “Supercontinuum generation in photonic crystal fiber,” Rev. Mod. Phys. 78, 1135–1184 (2006).
[Crossref]

K. L. Corwin, N. R. Newbury, J. M. Dudley, S. Coen, S. A. Diddams, B. R. Washburn, K. Weber, and R. S. Windeler, “Fundamental amplitude noise limitations to supercontinuum spectra generated in a microstructured fiber,” Appl. Phys. B 77, 269–277 (2003).
[Crossref]

J. M. Dudley and S. Coen, “Coherence properties of supercontinuum spectra generated in photonic crystal and tapered optical fibers,” Opt. Lett. 27, 1180–1182 (2002).
[Crossref]

Ebendorff-Heidepriem, H.

Engelsholm, R.

I. Gonzalo, R. Engelsholm, M. Sørensen, and O. Bang, “Polarization noise places severe constraints on coherence of all-normal dispersion femtosecond supercontinuum generation,” Sci. Rep. 8, 6579 (2018).
[Crossref]

S. Rao, R. Engelsholm, I. Gonzalo, B. Zhou, P. Bowen, P. Moselund, M. Bache, and O. Bang, “Ultra-low noise supercontinuum generation with flat near-zero normal dispersion fiber,” arXiv:1812.03877 (2018).

Farries, M.

Feehan, J. S.

Fercher, A. F.

Feuchter, T.

Feurer, T.

Finot, C.

Frosz, M. H.

Genty, G.

J. M. Dudley, G. Genty, and S. Coen, “Supercontinuum generation in photonic crystal fiber,” Rev. Mod. Phys. 78, 1135–1184 (2006).
[Crossref]

Gonzalo, I.

I. Gonzalo, R. Engelsholm, M. Sørensen, and O. Bang, “Polarization noise places severe constraints on coherence of all-normal dispersion femtosecond supercontinuum generation,” Sci. Rep. 8, 6579 (2018).
[Crossref]

I. Gonzalo and O. Bang, “Role of the Raman gain in the noise dynamics of all-normal dispersion silica fiber supercontinuum generation,” J. Opt. Soc. Am. B 35, 2102–2110 (2018).
[Crossref]

S. Rao, R. Engelsholm, I. Gonzalo, B. Zhou, P. Bowen, P. Moselund, M. Bache, and O. Bang, “Ultra-low noise supercontinuum generation with flat near-zero normal dispersion fiber,” arXiv:1812.03877 (2018).

Gonzalo, I. B.

Haedersdal, M.

Hänsch, T.

T. Udem, R. Holzwarth, and T. Hänsch, “Optical frequency metrology,” Nature 416, 233–237 (2002).
[Crossref]

Hartung, A.

Heidt, A.

Heidt, A. M.

Hermann, B.

Holzwarth, R.

T. Udem, R. Holzwarth, and T. Hänsch, “Optical frequency metrology,” Nature 416, 233–237 (2002).
[Crossref]

Israelsen, N. M.

Jakobsen, C.

Jensen, M.

Johansen, J.

Kibler, B.

Knight, J. C.

Krok, P.

Lantz, E.

Larsen, C.

Leick, L.

Li, F.

Li, Q.

Liu, L.

Lloyd, G. R.

Maillotte, H.

Maria, M.

Markos, C.

Mogensen, M.

Møller, U.

Monro, T. M.

Moselund, P.

S. Rao, R. Engelsholm, I. Gonzalo, B. Zhou, P. Bowen, P. Moselund, M. Bache, and O. Bang, “Ultra-low noise supercontinuum generation with flat near-zero normal dispersion fiber,” arXiv:1812.03877 (2018).

Moselund, P. M.

Mussot, A.

Nagasaka, K.

Nallala, J.

Napier, B.

Newbury, N. R.

K. L. Corwin, N. R. Newbury, J. M. Dudley, S. Coen, S. A. Diddams, B. R. Washburn, K. Weber, and R. S. Windeler, “Fundamental amplitude noise limitations to supercontinuum spectra generated in a microstructured fiber,” Appl. Phys. B 77, 269–277 (2003).
[Crossref]

Ohishi, Y.

Petersen, C. R.

Pitois, S.

Podoleanu, A.

Povazay, B.

Price, J. H. V.

Provost, L.

Prtljaga, N.

Qin, G.

Rao, S.

S. Rao, R. Engelsholm, I. Gonzalo, B. Zhou, P. Bowen, P. Moselund, M. Bache, and O. Bang, “Ultra-low noise supercontinuum generation with flat near-zero normal dispersion fiber,” arXiv:1812.03877 (2018).

Rohwer, E. G.

Sattmann, H.

Scherzer, E.

Schwoerer, H.

Smith, R. G.

Sørensen, M.

I. Gonzalo, R. Engelsholm, M. Sørensen, and O. Bang, “Polarization noise places severe constraints on coherence of all-normal dispersion femtosecond supercontinuum generation,” Sci. Rep. 8, 6579 (2018).
[Crossref]

Sørensen, S. T.

St.J. Russell, P.

Steffensen, H.

Stone, N.

Suzuki, T.

Sylvestre, T.

Thomsen, C. L.

Tong, H.

Udem, T.

T. Udem, R. Holzwarth, and T. Hänsch, “Optical frequency metrology,” Nature 416, 233–237 (2002).
[Crossref]

Unterhuber, A.

Vetterlein, M.

Wabnitz, S.

Wadsworth, W. J.

Wai, P. K. A.

Ward, J.

Washburn, B. R.

K. L. Corwin, N. R. Newbury, J. M. Dudley, S. Coen, S. A. Diddams, B. R. Washburn, K. Weber, and R. S. Windeler, “Fundamental amplitude noise limitations to supercontinuum spectra generated in a microstructured fiber,” Appl. Phys. B 77, 269–277 (2003).
[Crossref]

Weber, K.

K. L. Corwin, N. R. Newbury, J. M. Dudley, S. Coen, S. A. Diddams, B. R. Washburn, K. Weber, and R. S. Windeler, “Fundamental amplitude noise limitations to supercontinuum spectra generated in a microstructured fiber,” Appl. Phys. B 77, 269–277 (2003).
[Crossref]

Windeler, R. S.

K. L. Corwin, N. R. Newbury, J. M. Dudley, S. Coen, S. A. Diddams, B. R. Washburn, K. Weber, and R. S. Windeler, “Fundamental amplitude noise limitations to supercontinuum spectra generated in a microstructured fiber,” Appl. Phys. B 77, 269–277 (2003).
[Crossref]

Yuan, J.

Zhou, B.

S. Rao, R. Engelsholm, I. Gonzalo, B. Zhou, P. Bowen, P. Moselund, M. Bache, and O. Bang, “Ultra-low noise supercontinuum generation with flat near-zero normal dispersion fiber,” arXiv:1812.03877 (2018).

Zhu, Z.

Appl. Opt. (1)

Appl. Phys. B (1)

K. L. Corwin, N. R. Newbury, J. M. Dudley, S. Coen, S. A. Diddams, B. R. Washburn, K. Weber, and R. S. Windeler, “Fundamental amplitude noise limitations to supercontinuum spectra generated in a microstructured fiber,” Appl. Phys. B 77, 269–277 (2003).
[Crossref]

Biomed. Opt. Express (2)

Electron. Lett. (1)

U. Møller and O. Bang, “Intensity noise in normal-pumped picoseconds supercontinuum generation, where higher-order Raman lines cross into the anomalous dispersion regime,” Electron. Lett. 49, 63–65 (2013).
[Crossref]

J. Opt. Soc. Am. B (6)

Nature (1)

T. Udem, R. Holzwarth, and T. Hänsch, “Optical frequency metrology,” Nature 416, 233–237 (2002).
[Crossref]

Opt. Express (9)

U. Møller, S. T. Sørensen, C. Jakobsen, J. Johansen, P. M. Moselund, C. L. Thomsen, and O. Bang, “Power dependence of supercontinuum noise in uniform and tapered PCFs,” Opt. Express 20, 2851–2857 (2012).
[Crossref]

D. Buccollero, H. Steffensen, H. Ebendorff-Heidepriem, T. M. Monro, and O. Bang, “Midinfrared optical rogue waves in soft glass photonic crystal fiber,” Opt. Express 19, 17973–17978 (2011).
[Crossref]

M. H. Frosz, “Validation of input-noise model for simulations of supercontinuum generation and rogue waves,” Opt. Express 18, 14778–14787 (2010).
[Crossref]

F. Li, Q. Li, J. Yuan, and P. K. A. Wai, “Highly coherent supercontinuum generation with picosecond pulses by using self-similar compression,” Opt. Express 22, 27339–27354 (2014).
[Crossref]

M. H. Frosz, O. Bang, and A. Bjarklev, “Soliton collision and Raman gain regimes in continuous-wave pumped supercontinuum generation,” Opt. Express 14, 9391–9407 (2006).
[Crossref]

A. Mussot, E. Lantz, H. Maillotte, T. Sylvestre, C. Finot, and S. Pitois, “Spectral broadening of a partially coherent CW laser beam in single-mode optical fibers,” Opt. Express 12, 2838–2843 (2004).
[Crossref]

S. T. Sørensen, C. Larsen, U. Møller, P. M. Moselund, C. L. Thomsen, and O. Bang, “The role of phase coherence in seeded supercontinuum generation,” Opt. Express 20, 22886–22894 (2012).
[Crossref]

A. M. Heidt, A. Hartung, G. W. Bosman, P. Krok, E. G. Rohwer, H. Schwoerer, and H. Bartelt, “Coherent octave spanning near-infrared and visible supercontinuum generation in all-normal dispersion photonic crystal fibers,” Opt. Express 19, 3775–3787 (2011).
[Crossref]

A. Hartung, A. Heidt, and H. Bartelt, “Design of all-normal dispersion microstructured optical fibers for pulse-preserving supercontinuum generation,” Opt. Express 19, 7742–7749 (2011).
[Crossref]

Opt. Lett. (5)

Rev. Mod. Phys. (1)

J. M. Dudley, G. Genty, and S. Coen, “Supercontinuum generation in photonic crystal fiber,” Rev. Mod. Phys. 78, 1135–1184 (2006).
[Crossref]

Sci. Rep. (1)

I. Gonzalo, R. Engelsholm, M. Sørensen, and O. Bang, “Polarization noise places severe constraints on coherence of all-normal dispersion femtosecond supercontinuum generation,” Sci. Rep. 8, 6579 (2018).
[Crossref]

Other (2)

R. Alfano, The Supercontinuum Laser Source, 3rd ed. (Springer, 2016).

S. Rao, R. Engelsholm, I. Gonzalo, B. Zhou, P. Bowen, P. Moselund, M. Bache, and O. Bang, “Ultra-low noise supercontinuum generation with flat near-zero normal dispersion fiber,” arXiv:1812.03877 (2018).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1.
Fig. 1. (a) Measured (dashed blue) and modeled (solid black) dispersion profile, and fiber losses (solid red) of the NL-1050-NE-PM ANDi PCF. (b) Numerical SC spectra generated in 1 m of ANDi fiber with a 1054 nm pump with an average peak power and pulse duration of P0=100kW and T0=50fs, respectively. An amplitude noise of 0.5% was used, corresponding to a pulse duration noise of 0.4%.
Fig. 2.
Fig. 2. (a) Average spectral coherence |g12| of SC pulses generated with P0=100kW peak power pump pulses as a function of pump pulse duration T0 and propagation distance for an amplitude noise value of 0.3% (pulse duration noise 0.24%). The dotted line indicates the limit |g12|=0.9. (b) Limit |g12|=0.9 for a range of amplitude noise values from 0.1% to 1% (pulse duration noise 0.08%–0.8%).
Fig. 3.
Fig. 3. (a) RIN profiles for different amplitude noise values and mean spectral profile out of 1 m of ANDi fiber pumped with 100 kW peak power, 50 fs long pulses at 1054 nm. (b) Evolution of the RIN along the fiber length for an amplitude noise value of 0.5% (pulse duration noise 0.4%). Note: The color map has a dynamic range limited to a RIN equal to 0.5%, meaning RIN data is only visible for wavelengths 800–1430 nm.
Fig. 4.
Fig. 4. (a) RIN profile (blue line) and mean spectrum (red line) of an ensemble of 20 pulses after 10 cm of fiber with 100 kW peak power, 50 fs pulse duration at 1054 nm for an amplitude noise value of 0.5% (pulse duration noise of 0.4%). (b) RIN spectrum as a function of the input noise: OPM only (black line), amplitude noise plus OPM noise (red line), pulse duration noise plus OPM (pink line), and amplitude noise plus pulse duration noise and OPM (blue line).

Equations (6)

Equations on this page are rendered with MathJax. Learn more.

Az=α(ω)2A+k2ik+1k!βkkATk+iγ(1+iτ0T)(A+R(T)|A(z,TT)|2dT),
δT0=0.8*(δAN1),
A(0,t)=P0δANsech(t/(T0(10.8(δAN1))))+F1{δQN},
|g12(ω)|=|A˜i*(ω)A˜j(ω)ij|A˜i(ω)|2|A˜j(ω)|2|,|g12|=0|g12(ω)||A˜i(ω)|2dω0|A˜i(ω)|2dω,
RIN(ω)=(|A˜(ω)|2|A˜(ω)|2)2/|A˜(ω)|2.
|A˜(ω)|2=P0T02|0+sech(x)(ei(ωω0+Δω)T0x+ei(ωω0Δω)T0x)dx|2,

Metrics