Abstract

In this paper, using double-layer graphene nanograting arrays on top of a titanium nitride ground plane, a tunable plasmonic sensor has been presented for mid-infrared chemical sensing applications. Utilizing the plasmonic field enhancement and near-field coupling of the double-layer graphene scheme, narrowband absorption spectra in the mid-infrared region have been achieved for the required selective characteristic of the proposed sensor. The large surface area and atomic level thickness of graphene result in high surface sensitivity, leading to the tunability of the resonant wavelength of the sensor by the chemical potential variation. Moreover, employment of titanium nitride as the ground plane benefits from its abundance and low cost, fabrication stability, high melting point, and biocompatibility compared to metallic plates. Using finite-difference time-domain numerical simulations, it has been shown that the proposed sensor yields high sensitivity and a figure of merit of 3188.8 nm/RIU and ${9.1}\,\,{\rm{RIU}^{ - 1}}$, respectively, in the refractive index range of 1.31–1.39. To prove the feasibility of the design for chemical sensing applications, the sensor response in contact with organic aromatic pollutants in water has also been investigated, demonstrating a high sensitivity of 29,250 nm/RIU and a figure of merit of ${83.5}\,\,{\rm{RIU}^{ - 1}}$.

© 2019 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Enhancing sensitivity to ambient refractive index with tunable few-layer graphene/hBN nanoribbons

Huan Jiang, Sajid Choudhury, Zhaxylyk A. Kudyshev, Di Wang, Ludmila J. Prokopeva, Peng Xiao, Yongyuan Jiang, and Alexander V. Kildishev
Photon. Res. 7(7) 815-822 (2019)

Low-loss and high-performance mid-infrared plasmon-phonon in graphene-hexagonal boron nitride waveguide

Yaser Hajati, Zeinab Zanbouri, and Mohammad Sabaeian
J. Opt. Soc. Am. B 35(2) 446-453 (2018)

Hybridization-induced dual-band tunable graphene metamaterials for sensing

Shaokang Gong, Binggang Xiao, Lihua Xiao, Shengjun Tong, Sanshui Xiao, and Xiumin Wang
Opt. Mater. Express 9(1) 35-43 (2019)

References

  • View by:
  • |
  • |
  • |

  1. H. Li, L. Wang, and X. Zhai, “Tunable graphene-based mid-infrared plasmonic wide-angle narrowband perfect absorber,” Sci. Rep. 6, 36651 (2016).
    [Crossref]
  2. A. Akhavan, S. Abdolhosseini, H. Ghafoorifard, and H. Habibiyan, “Narrow band total absorber at near-infrared wavelengths using monolayer graphene and sub-wavelength grating based on critical coupling,” J. Lightwave Technol. 36, 5593–5599 (2018).
    [Crossref]
  3. Z. Zhao, G. Li, F. Yu, H. Yang, X. Chen, and W. Lu, “Sub-wavelength grating enhanced ultra-narrow graphene perfect absorber,” Plasmonics 13, 2267–2272 (2018).
    [Crossref]
  4. X. Lu, L. Zhang, and T. Zhang, “Nanoslit-microcavity-based narrow band absorber for sensing applications,” Opt. Express 23, 20715–20720 (2015).
    [Crossref]
  5. Z. Khezripour, F. F. Mahani, and A. Mokhtari, “Double-sided TiO2 nano-gratings for broadband performance enhancement of organic solar cells,” J. Opt. Soc. Am. B 35, 2478–2483 (2018).
    [Crossref]
  6. Z. Khezripour, F. F. Mahani, and A. Mokhtari, “Optimized design of silicon-based moth eye nanostructures for thin film solar cells,” in 3rd Conference on Swarm Intelligence and Evolutionary Computation (CSIEC) (2018).
  7. F. F. Mahani and A. Mokhtari, “Enhancement of ITO-free organic solar cells utilizing plasmonic nanohole electrodes,” in 7th International Conference on Nanotechnology (ICN) (2017).
  8. Z. Khezripour, F. F. Mahani, and A. Mokhtari, “Performance improvement of ultrathin organic solar cells utilizing light-trapping aluminum-titanium nitride nanosquare arrays,” Opt. Mater. 84, 651–657 (2018).
    [Crossref]
  9. M. Salemizadeh, F. F. Mahani, and A. Mokhtari, “Design of aluminum-based nanoring arrays for realizing efficient plasmonic sensors,” J. Opt. Soc. Am. B 36, 786–793 (2019).
    [Crossref]
  10. M. Salemizadeh, F. F. Mahani, and A. Mokhtari, “Design and development of efficient plasmonic sensors based on bi-layer of silver-SiO2 nanodisk arrays,” in 27th Iranian Conference on Electrical Engineering (ICEE) (IEEE, 2019), pp. 311–314.
  11. N. Liu, M. Mesch, T. Weiss, M. Hentschel, and H. Giessen, “Infrared perfect absorber and its application as plasmonic sensor,” Nano Lett. 10, 2342–2348 (2010).
    [Crossref]
  12. F. Baranzadeh and N. Nozhat, “Tunable metasurface refractive index plasmonic nano-sensor utilizing an ITO thin layer in the near-infrared region,” Appl. Opt. 58, 2616–2623 (2019).
    [Crossref]
  13. P. Zhou and G. Zheng, “High-efficient light absorption of monolayer graphene via cylindrical dielectric arrays and the sensing application,” Opt. Mater. 78, 471–476 (2018).
    [Crossref]
  14. A. Farmani and A. Mir, “Graphene sensor based on surface plasmon resonance for optical scanning,” IEEE Photon. Technol. Lett. 31, 643–646 (2019).
    [Crossref]
  15. A. Alipour, A. Farmani, and A. Mir, “High sensitivity and tunable nanoscale sensor based on plasmon-induced transparency in plasmonic metasurface,” IEEE Sens. J. 18, 7047–7054 (2018).
    [Crossref]
  16. G. Li, X. Chen, O. Li, C. Shao, Y. Jiang, L. Huang, B. Ni, W. Hu, and W. Lu, “A novel plasmonic resonance sensor based on an infrared perfect absorber,” J. Phys. D 45, 205102 (2012).
    [Crossref]
  17. G. Li, X. Wu, Y. Jiang, C. Shao, L. Huang, X. Chen, W. Hu, and W. Lu, “The improvement of figure of merit with infrared perfect absorber for plasmonic resonance sensing,” in 12th International Conference on Numerical Simulation of Optoelectronic Devices (NUSOD) (IEEE, 2012), pp. 3–4.
  18. F. F. Mahani and A. Mokhtari, “Performance improvement of organic solar cells using a hybrid color filter electrode of graphene-aluminum nanorings,” J. Nanoelectron. Optoelectron. 13, 1917–1923 (2018).
    [Crossref]
  19. F. F. Mahani and A. Mokhtari, “Polarization-tuned chromatic electrodes using hybrid design of graphene-aluminum nanocross arrays for efficient organic solar cells,” Opt. Mater. 84, 158–165 (2018).
    [Crossref]
  20. F. F. Mahani and A. Mokhtari, “TiO2 circular nano-gratings as anti-reflective coatings and potential color filters for efficient organic solar cells,” J. Nanoelectron. Optoelectron. 13, 1624–1629 (2018).
    [Crossref]
  21. H. J. Park, T. Xu, J. Y. Lee, A. Ledbetter, and L. J. Guo, “Photonic color filters integrated with organic solar cells for energy harvesting,” ACS Nano 5, 7055–7060 (2011).
    [Crossref]
  22. V. R. Shrestha, S.-S. Lee, E.-S. Kim, and D.-Y. Choi, “Aluminum plasmonics based highly transmissive polarization-independent subtractive color filters exploiting a nanopatch array,” Nano Lett. 14, 6672–6678 (2014).
    [Crossref]
  23. F. F. Mahani, A. Mahanipour, and A. Mokhtari, “Optimization of plasmonic color filters for CMOS image sensors by genetic algorithm,” in 2nd Conference on Swarm Intelligence and Evolutionary Computation (CSIEC) (2017), pp. 12–15.
  24. F. F. Mahani, A. Mokhtari, and M. Mehran, “Design and development of aluminum nanoring arrays for realization of dual-mode operation plasmonic color filters,” J. Opt. Soc. Am. B 35, 1764–1771 (2018).
    [Crossref]
  25. A. Mahanipour, F. F. Mahani, and A. Mokhtari, “Optimized design of nanohole array-based plasmonic color filters integrating genetic algorithm with FDTD solutions,” J. Artif. Intell. Data Mining 7, 279–286 (2019).
    [Crossref]
  26. K. Walls, Q. Chen, S. Collins, D. R. Cumming, and T. D. Drysdale, “Automated design, fabrication, and characterization of color matching plasmonic filters,” IEEE Photon. Technol. Lett. 24, 602–604 (2012).
    [Crossref]
  27. F. F. Mahani and A. Mokhtari, “Performance enhancement of nanohole array-based plasmonic color filters for CMOS image sensors,” in 23rd Iranian Conference on Optics and Photonics (ICOP 2017) and the 9th Iranian Conference on Photonics Engineering and Technology (ICPET 2017) (2017).
  28. F. F. Mahani, A. Mokhtari, and M. Mehran, “Dual mode operation, highly selective nanohole array-based plasmonic colour filters,” Nanotechnology 28, 385203 (2017).
    [Crossref]
  29. A. Rifat, M. Rahmani, L. Xu, and A. Miroshnichenko, “Hybrid metasurface based tunable near-perfect absorber and plasmonic sensor,” Materials 11, 1091 (2018).
    [Crossref]
  30. I. Choi and Y. Choi, “Plasmonic nanosensors: review and prospect,” IEEE J. Sel. Top. Quantum Electron. 18, 1110–1121 (2012).
    [Crossref]
  31. W. Yue, Z. Wang, Y. Yang, J. Han, J. Li, Z. Guo, H. Tan, and X.-X. Zhang, “High performance infrared plasmonic metamaterial absorbers and their applications to thin-film sensing,” Plasmonics 11, 1557–1563 (2016).
    [Crossref]
  32. M. Danaie and A. Shahzadi, “Design of a high-resolution metal-insulator–metal plasmonic refractive index sensor based on a ring-shaped Si resonator,” Plasmonics, 1–13 (2019).
    [Crossref]
  33. X. Li and S. Yu, “Extremely high sensitive plasmonic refractive index sensors based on metallic grating,” Plasmonics 5, 389–394 (2010).
    [Crossref]
  34. Y. Liu, Y. Q. Zhang, X. R. Jin, S. Zhang, and Y. P. Lee, “Dual-band infrared perfect absorber for plasmonic sensor based on the electromagnetically induced reflection-like effect,” Opt. Commun. 371, 173–177 (2016).
    [Crossref]
  35. J.-P. Guo, J.-H. Zhu, and X.-G. Huang, “Index sensing characteristics of the plasmonic sensor based on metal-insulator-metal waveguide-coupled structure,” Optoelectron. Lett. 9, 321–324 (2013).
    [Crossref]
  36. S.-S. Kim, C. Young, and B. Mizaikoff, “Miniaturized mid-infrared sensor technologies,” Anal. Bioanal. Chem. 390, 231–237 (2008).
    [Crossref]
  37. D. J. Rowe, D. Smith, and J. S. Wilkinson, “Complex refractive index spectra of whole blood and aqueous solutions of anticoagulants, analgesics and buffers in the mid-infrared,” Sci. Rep. 7, 7356 (2017).
    [Crossref]
  38. O. Limaj, D. Etezadi, N. J. Wittenberg, D. Rodrigo, D. Yoo, S.-H. Oh, and H. Altug, “Infrared plasmonic biosensor for real-time and label-free monitoring of lipid membranes,” Nano Lett. 16, 1502–1508 (2016).
    [Crossref]
  39. S. Asgari, Z. G. Kashani, and N. Granpayeh, “Tunable nano-scale graphene-based devices in mid-infrared wavelengths composed of cylindrical resonators,” J. Opt. 20, 045001 (2018).
    [Crossref]
  40. Z. Vafapour, Y. Hajati, M. Hajati, and H. Ghahraloud, “Graphene-based mid-infrared biosensor,” J. Opt. Soc. Am. B 34, 2586–2592 (2017).
    [Crossref]
  41. Y.-B. Chen, “Development of mid-infrared surface plasmon resonance-based sensors with highly-doped silicon for biomedical and chemical applications,” Opt. Express 17, 3130–3140 (2009).
    [Crossref]
  42. V. Singh, P. T. Lin, N. Patel, H. Lin, L. Li, Y. Zou, F. Deng, C. Ni, J. Hu, and J. Giammarco, “Mid-infrared materials and devices on a Si platform for optical sensing,” Sci. Technol. Adv. Mater. 15, 014603 (2014).
    [Crossref]
  43. E. Baudet, A. Gutierrez-Arroyo, M. Baillieul, J. Charrier, P. Němec, L. Bodiou, J. Lemaitre, E. Rinnert, K. Michel, and B. Bureau, “Development of an evanescent optical integrated sensor in the mid-infrared for detection of pollution in groundwater or seawater,” Adv. Device Mater. 3, 23–29 (2017).
    [Crossref]
  44. B. Pejcic, M. Myers, and A. Ross, “Mid-infrared sensing of organic pollutants in aqueous environments,” Sensors 9, 6232–6253 (2009).
    [Crossref]
  45. C. K. Bryant, P. T. LaPuma, G. L. Hook, and E. J. Houser, “Chemical agent identification by field-based attenuated total reflectance infrared detection and solid-phase microextraction,” Anal. Chem. 79, 2334–2340 (2007).
    [Crossref]
  46. C. J. Koester and A. Moulik, “Trends in environmental analysis,” Anal. Chem. 77, 3737–3754 (2005).
    [Crossref]
  47. B. Pejcic, P. Eadington, and A. Ross, “Environmental monitoring of hydrocarbons: a chemical sensor perspective,” Environ. Sci. Technol. 41, 6333–6342 (2007).
    [Crossref]
  48. A. De Marcellis, E. Palange, M. Janneh, C. Rizza, A. Ciattoni, and S. Mengali, “Design optimisation of plasmonic metasurfaces for mid-infrared high-sensitivity chemical sensing,” Plasmonics 12, 293–298 (2017).
    [Crossref]
  49. R. Li, D. Wu, Y. Liu, L. Yu, Z. Yu, and H. Ye, “Infrared plasmonic refractive index sensor with ultra-high figure of merit based on the optimized all-metal grating,” Nanoscale Res. Lett. 12, 1 (2017).
    [Crossref]
  50. M. Karlowatz, M. Kraft, and B. Mizaikoff, “Simultaneous quantitative determination of benzene, toluene, and xylenes in water using mid-infrared evanescent field spectroscopy,” Anal. Chem. 76, 2643–2648 (2004).
    [Crossref]
  51. C. E. Nilsson, S. Abbas, M. Bennemo, A. Larsson, M. Hämäläinen, and Å. Frostell-Karlsson, “A novel assay for influenza virus quantification using surface plasmon resonance,” Vaccine 28, 759–766 (2010).
    [Crossref]
  52. F. Bonaccorso, Z. Sun, T. Hasan, and A. Ferrari, “Graphene photonics and optoelectronics,” Nat. Photonics 4, 611–622 (2010).
    [Crossref]
  53. F. J. Garcia de Abajo, “Graphene plasmonics: challenges and opportunities,” ACS Photon. 1, 135–152 (2014).
    [Crossref]
  54. H. Lu, C. Zeng, Q. Zhang, X. Liu, M. M. Hossain, P. Reineck, and M. Gu, “Graphene-based active slow surface plasmon polaritons,” Sci. Rep. 5, 8443 (2015).
    [Crossref]
  55. Z. Tao, H. Dong, Y. Duan, J. Liu, and B. Cao, “Tunable coupled terahertz surface plasmon polaritons in graphene metamaterials,” J. Opt. 21, 045107 (2019).
    [Crossref]
  56. Z. Fei, A. Rodin, G. Andreev, W. Bao, A. McLeod, M. Wagner, L. Zhang, Z. Zhao, M. Thiemens, and G. Dominguez, “Gate-tuning of graphene plasmons revealed by infrared nano-imaging,” Nature 487, 82–85 (2012).
    [Crossref]
  57. Z. Fang, S. Thongrattanasiri, A. Schlather, Z. Liu, L. Ma, Y. Wang, P. M. Ajayan, P. Nordlander, N. J. Halas, and F. J. García de Abajo, “Gated tunability and hybridization of localized plasmons in nanostructured graphene,” ACS Nano 7, 2388–2395 (2013).
    [Crossref]
  58. F. Xiong, J. Zhou, W. Xu, Z. Zhu, X. Yuan, J. Zhang, and S. Qin, “Visible to near-infrared coherent perfect absorption in monolayer graphene,” J. Opt. 20, 095401 (2018).
    [Crossref]
  59. C. Sun, “On the plasmonic properties of Ag@ SiO2@ graphene core-shell nanostructures,” Plasmonics 13, 1671–1680 (2018).
    [Crossref]
  60. X. Yan, T. Wang, X. Han, S. Xiao, Y. Zhu, and Y. Wang, “High sensitivity nanoplasmonic sensor based on plasmon-induced transparency in a graphene nanoribbon waveguide coupled with detuned graphene square-nanoring resonators,” Plasmonics 12, 1449–1455 (2017).
    [Crossref]
  61. R. Yang, W. Xu, Z. Zhu, J. Zhang, K. Liu, C. Guo, and X. Yuan, “Tuneable infrared perfect absorber based on spatially separated double-layer graphene,” J. Opt. 21, 085002 (2019).
    [Crossref]
  62. F. H. Koppens, D. E. Chang, and F. J. Garcia de Abajo, “Graphene plasmonics: a platform for strong light-matter interactions,” Nano Lett. 11, 3370–3377 (2011).
    [Crossref]
  63. H.-J. Li, L.-L. Wang, B. Sun, Z.-R. Huang, and X. Zhai, “Tunable mid-infrared plasmonic band-pass filter based on a single graphene sheet with cavities,” J. Appl. Phys. 116, 224505 (2014).
    [Crossref]
  64. A. H. Kazemi, F. F. Mahani, and A. Mokhtari, “Peak amplitude enhancement of photoconductive antenna using periodic nanoslit and graphene in the THz band,” Optik 185, 114–120 (2019).
    [Crossref]
  65. A. Y. Nikitin, S. Maier, and L. Martin-Moreno, “Special issue on graphene nanophotonics,” J. Opt. 15, 110201 (2013).
    [Crossref]
  66. Y. Zhao, X. Hu, G. Chen, X. Zhang, Z. Tan, J. Chen, R. S. Ruoff, Y. Zhu, and Y. Lu, “Infrared biosensors based on graphene plasmonics: modeling,” Phys. Chem. Chem. Phys. 15, 17118–17125 (2013).
    [Crossref]
  67. P. Sun, F. Xia, L. Liu, L. Jiao, K. Chen, M. Li, Q. Liu, and M. Yun, “Tunable graphene-based infrared perfect absorber for sensing,” in IEEE International Conference on Manipulation, Manufacturing and Measurement on the Nanoscale (3M-NANO) (IEEE, 2017), pp. 83–86.
  68. Y. Ren, C. Zhu, W. Cai, H. Li, H. Ji, I. Kholmanov, Y. Wu, R. D. Piner, and R. S. Ruoff, “Detection of sulfur dioxide gas with graphene field effect transistor,” Appl. Phys. Lett. 100, 163114 (2012).
    [Crossref]
  69. A. Lipatov, A. Varezhnikov, M. Augustin, M. Bruns, M. Sommer, V. Sysoev, A. Kolmakov, and A. Sinitskii, “Intrinsic device-to-device variation in graphene field-effect transistors on a Si/SiO2 substrate as a platform for discriminative gas sensing,” Appl. Phys. Lett. 104, 013114 (2014).
    [Crossref]
  70. S. Zeng, S. Hu, J. Xia, T. Anderson, X.-Q. Dinh, X.-M. Meng, P. Coquet, and K.-T. Yong, “Graphene-MoS2 hybrid nanostructures enhanced surface plasmon resonance biosensors,” Sens. Actuators B Chem. 207, 801–810 (2015).
    [Crossref]
  71. L. Wu, H. Chu, W. Koh, and E. Li, “Highly sensitive graphene biosensors based on surface plasmon resonance,” Opt. Express 18, 14395–14400 (2010).
    [Crossref]
  72. E. Shkondin, T. Repän, O. Takayama, and A. Lavrinenko, “High aspect ratio titanium nitride trench structures as plasmonic biosensor,” Opt. Mater. Express 7, 4171–4182 (2017).
    [Crossref]
  73. A. E. Khalil, A. H. El-Saeed, M. A. Ibrahim, M. E. Hashish, M. R. Abdelmonem, M. F. O. Hameed, M. Y. Azab, and S. Obayya, “Highly sensitive photonic crystal fiber biosensor based on titanium nitride,” Opt. Quantum Electron. 50, 158 (2018).
    [Crossref]
  74. R. Rashiditabar, N. Nozhat, and M. S. Zare, “Tunable plasmonic absorber based on TiN-nanosphere liquid crystal hybrid in visible and near-infrared regions,” Plasmonics 13, 1853–1859 (2018).
    [Crossref]
  75. P.-Y. Chen and A. Alu, “Atomically thin surface cloak using graphene monolayers,” ACS Nano 5, 5855–5863 (2011).
    [Crossref]
  76. G. W. Hanson, “Dyadic Green’s functions and guided surface waves for a surface conductivity model of graphene, ”J. Appl. Phys. 103, 064302 (2008).
    [Crossref]
  77. B. Wang, X. Zhang, X. Yuan, and J. Teng, “Optical coupling of surface plasmons between graphene sheets,” Appl. Phys. Lett. 100, 131111 (2012).
    [Crossref]
  78. W. Britton, Y. Chen, and L. Dal Negro, “Double-plasmon broadband response of engineered titanium silicon oxynitride,” Opt. Mater. Express 9, 878–891 (2019).
    [Crossref]
  79. E. D. Palik, Handbook of Optical Constants of Solids (Academic, 1998), Vol. 3.
  80. P. B. Johnson and R.-W. Christy, “Optical constants of the noble metals,” Phys. Rev. B 6, 4370 (1972).
    [Crossref]
  81. G. V. Naik, J. L. Schroeder, X. Ni, A. V. Kildishev, T. D. Sands, and A. Boltasseva, “Titanium nitride as a plasmonic material for visible and near-infrared wavelengths,” Opt. Mater. Express 2, 478–489 (2012).
    [Crossref]
  82. G. V. Naik, J. Kim, and A. Boltasseva, “Oxides and nitrides as alternative plasmonic materials in the optical range,” Opt. Mater. Express 1, 1090–1099 (2011).
    [Crossref]
  83. H. Wang, Q. Chen, L. Wen, S. Song, X. Hu, and G. Xu, “Titanium-nitride-based integrated plasmonic absorber/emitter for solar thermophotovoltaic application,” Photon. Res. 3, 329–334 (2015).
    [Crossref]
  84. N. Venugopal, V. Gerasimov, A. Ershov, S. Karpov, and S. Polyutov, “Titanium nitride as light trapping plasmonic material in silicon solar cell,” Opt. Mater. 72, 397–402 (2017).
    [Crossref]
  85. D.-G. Park, T.-H. Cha, K.-Y. Lim, H.-J. Cho, T.-K. Kim, S.-A. Jang, Y.-S. Suh, V. Misra, I.-S. Yeo, and J.-S. Roh, “Robust ternary metal gate electrodes for dual gate CMOS devices,” in International Electron Devices Meeting. Technical Digest (Cat. No. 01CH37224) (IEEE, 2001), pp. 30.36.31–30.36.34.
  86. P. Patsalas and S. Logothetidis, “Optical, electronic, and transport properties of nanocrystalline titanium nitride thin films,” J. Appl. Phys. 90, 4725–4734 (2001).
    [Crossref]
  87. N. S. Lawand, P. J. French, J. J. Briaire, and J. H. M. Frijns, “Thin titanium nitride films deposited using DC magnetron sputtering used for neural stimulation and sensing purposes,” Procedia Eng. 47, 726–729 (2012).
    [Crossref]
  88. G. Dabos, A. Manolis, A. Giesecke, C. Porschatis, B. Chmielak, T. Wahlbrink, N. Pleros, and D. Tsiokos, “TM grating coupler on low-loss LPCVD based Si3N4 waveguide platform,” Opt. Commun. 405, 35–38 (2017).
    [Crossref]
  89. X. Wang and Y. Shi, “Fabrication techniques of graphene nanostructures,” in Renewable Energy (2014), pp. 1–30.

2019 (8)

A. Farmani and A. Mir, “Graphene sensor based on surface plasmon resonance for optical scanning,” IEEE Photon. Technol. Lett. 31, 643–646 (2019).
[Crossref]

Z. Tao, H. Dong, Y. Duan, J. Liu, and B. Cao, “Tunable coupled terahertz surface plasmon polaritons in graphene metamaterials,” J. Opt. 21, 045107 (2019).
[Crossref]

A. H. Kazemi, F. F. Mahani, and A. Mokhtari, “Peak amplitude enhancement of photoconductive antenna using periodic nanoslit and graphene in the THz band,” Optik 185, 114–120 (2019).
[Crossref]

R. Yang, W. Xu, Z. Zhu, J. Zhang, K. Liu, C. Guo, and X. Yuan, “Tuneable infrared perfect absorber based on spatially separated double-layer graphene,” J. Opt. 21, 085002 (2019).
[Crossref]

A. Mahanipour, F. F. Mahani, and A. Mokhtari, “Optimized design of nanohole array-based plasmonic color filters integrating genetic algorithm with FDTD solutions,” J. Artif. Intell. Data Mining 7, 279–286 (2019).
[Crossref]

W. Britton, Y. Chen, and L. Dal Negro, “Double-plasmon broadband response of engineered titanium silicon oxynitride,” Opt. Mater. Express 9, 878–891 (2019).
[Crossref]

M. Salemizadeh, F. F. Mahani, and A. Mokhtari, “Design of aluminum-based nanoring arrays for realizing efficient plasmonic sensors,” J. Opt. Soc. Am. B 36, 786–793 (2019).
[Crossref]

F. Baranzadeh and N. Nozhat, “Tunable metasurface refractive index plasmonic nano-sensor utilizing an ITO thin layer in the near-infrared region,” Appl. Opt. 58, 2616–2623 (2019).
[Crossref]

2018 (16)

F. F. Mahani, A. Mokhtari, and M. Mehran, “Design and development of aluminum nanoring arrays for realization of dual-mode operation plasmonic color filters,” J. Opt. Soc. Am. B 35, 1764–1771 (2018).
[Crossref]

Z. Khezripour, F. F. Mahani, and A. Mokhtari, “Double-sided TiO2 nano-gratings for broadband performance enhancement of organic solar cells,” J. Opt. Soc. Am. B 35, 2478–2483 (2018).
[Crossref]

A. Akhavan, S. Abdolhosseini, H. Ghafoorifard, and H. Habibiyan, “Narrow band total absorber at near-infrared wavelengths using monolayer graphene and sub-wavelength grating based on critical coupling,” J. Lightwave Technol. 36, 5593–5599 (2018).
[Crossref]

A. Rifat, M. Rahmani, L. Xu, and A. Miroshnichenko, “Hybrid metasurface based tunable near-perfect absorber and plasmonic sensor,” Materials 11, 1091 (2018).
[Crossref]

S. Asgari, Z. G. Kashani, and N. Granpayeh, “Tunable nano-scale graphene-based devices in mid-infrared wavelengths composed of cylindrical resonators,” J. Opt. 20, 045001 (2018).
[Crossref]

A. E. Khalil, A. H. El-Saeed, M. A. Ibrahim, M. E. Hashish, M. R. Abdelmonem, M. F. O. Hameed, M. Y. Azab, and S. Obayya, “Highly sensitive photonic crystal fiber biosensor based on titanium nitride,” Opt. Quantum Electron. 50, 158 (2018).
[Crossref]

R. Rashiditabar, N. Nozhat, and M. S. Zare, “Tunable plasmonic absorber based on TiN-nanosphere liquid crystal hybrid in visible and near-infrared regions,” Plasmonics 13, 1853–1859 (2018).
[Crossref]

F. Xiong, J. Zhou, W. Xu, Z. Zhu, X. Yuan, J. Zhang, and S. Qin, “Visible to near-infrared coherent perfect absorption in monolayer graphene,” J. Opt. 20, 095401 (2018).
[Crossref]

C. Sun, “On the plasmonic properties of Ag@ SiO2@ graphene core-shell nanostructures,” Plasmonics 13, 1671–1680 (2018).
[Crossref]

A. Alipour, A. Farmani, and A. Mir, “High sensitivity and tunable nanoscale sensor based on plasmon-induced transparency in plasmonic metasurface,” IEEE Sens. J. 18, 7047–7054 (2018).
[Crossref]

Z. Zhao, G. Li, F. Yu, H. Yang, X. Chen, and W. Lu, “Sub-wavelength grating enhanced ultra-narrow graphene perfect absorber,” Plasmonics 13, 2267–2272 (2018).
[Crossref]

Z. Khezripour, F. F. Mahani, and A. Mokhtari, “Performance improvement of ultrathin organic solar cells utilizing light-trapping aluminum-titanium nitride nanosquare arrays,” Opt. Mater. 84, 651–657 (2018).
[Crossref]

P. Zhou and G. Zheng, “High-efficient light absorption of monolayer graphene via cylindrical dielectric arrays and the sensing application,” Opt. Mater. 78, 471–476 (2018).
[Crossref]

F. F. Mahani and A. Mokhtari, “Performance improvement of organic solar cells using a hybrid color filter electrode of graphene-aluminum nanorings,” J. Nanoelectron. Optoelectron. 13, 1917–1923 (2018).
[Crossref]

F. F. Mahani and A. Mokhtari, “Polarization-tuned chromatic electrodes using hybrid design of graphene-aluminum nanocross arrays for efficient organic solar cells,” Opt. Mater. 84, 158–165 (2018).
[Crossref]

F. F. Mahani and A. Mokhtari, “TiO2 circular nano-gratings as anti-reflective coatings and potential color filters for efficient organic solar cells,” J. Nanoelectron. Optoelectron. 13, 1624–1629 (2018).
[Crossref]

2017 (10)

E. Baudet, A. Gutierrez-Arroyo, M. Baillieul, J. Charrier, P. Němec, L. Bodiou, J. Lemaitre, E. Rinnert, K. Michel, and B. Bureau, “Development of an evanescent optical integrated sensor in the mid-infrared for detection of pollution in groundwater or seawater,” Adv. Device Mater. 3, 23–29 (2017).
[Crossref]

X. Yan, T. Wang, X. Han, S. Xiao, Y. Zhu, and Y. Wang, “High sensitivity nanoplasmonic sensor based on plasmon-induced transparency in a graphene nanoribbon waveguide coupled with detuned graphene square-nanoring resonators,” Plasmonics 12, 1449–1455 (2017).
[Crossref]

A. De Marcellis, E. Palange, M. Janneh, C. Rizza, A. Ciattoni, and S. Mengali, “Design optimisation of plasmonic metasurfaces for mid-infrared high-sensitivity chemical sensing,” Plasmonics 12, 293–298 (2017).
[Crossref]

R. Li, D. Wu, Y. Liu, L. Yu, Z. Yu, and H. Ye, “Infrared plasmonic refractive index sensor with ultra-high figure of merit based on the optimized all-metal grating,” Nanoscale Res. Lett. 12, 1 (2017).
[Crossref]

N. Venugopal, V. Gerasimov, A. Ershov, S. Karpov, and S. Polyutov, “Titanium nitride as light trapping plasmonic material in silicon solar cell,” Opt. Mater. 72, 397–402 (2017).
[Crossref]

G. Dabos, A. Manolis, A. Giesecke, C. Porschatis, B. Chmielak, T. Wahlbrink, N. Pleros, and D. Tsiokos, “TM grating coupler on low-loss LPCVD based Si3N4 waveguide platform,” Opt. Commun. 405, 35–38 (2017).
[Crossref]

D. J. Rowe, D. Smith, and J. S. Wilkinson, “Complex refractive index spectra of whole blood and aqueous solutions of anticoagulants, analgesics and buffers in the mid-infrared,” Sci. Rep. 7, 7356 (2017).
[Crossref]

F. F. Mahani, A. Mokhtari, and M. Mehran, “Dual mode operation, highly selective nanohole array-based plasmonic colour filters,” Nanotechnology 28, 385203 (2017).
[Crossref]

E. Shkondin, T. Repän, O. Takayama, and A. Lavrinenko, “High aspect ratio titanium nitride trench structures as plasmonic biosensor,” Opt. Mater. Express 7, 4171–4182 (2017).
[Crossref]

Z. Vafapour, Y. Hajati, M. Hajati, and H. Ghahraloud, “Graphene-based mid-infrared biosensor,” J. Opt. Soc. Am. B 34, 2586–2592 (2017).
[Crossref]

2016 (4)

O. Limaj, D. Etezadi, N. J. Wittenberg, D. Rodrigo, D. Yoo, S.-H. Oh, and H. Altug, “Infrared plasmonic biosensor for real-time and label-free monitoring of lipid membranes,” Nano Lett. 16, 1502–1508 (2016).
[Crossref]

Y. Liu, Y. Q. Zhang, X. R. Jin, S. Zhang, and Y. P. Lee, “Dual-band infrared perfect absorber for plasmonic sensor based on the electromagnetically induced reflection-like effect,” Opt. Commun. 371, 173–177 (2016).
[Crossref]

W. Yue, Z. Wang, Y. Yang, J. Han, J. Li, Z. Guo, H. Tan, and X.-X. Zhang, “High performance infrared plasmonic metamaterial absorbers and their applications to thin-film sensing,” Plasmonics 11, 1557–1563 (2016).
[Crossref]

H. Li, L. Wang, and X. Zhai, “Tunable graphene-based mid-infrared plasmonic wide-angle narrowband perfect absorber,” Sci. Rep. 6, 36651 (2016).
[Crossref]

2015 (4)

H. Lu, C. Zeng, Q. Zhang, X. Liu, M. M. Hossain, P. Reineck, and M. Gu, “Graphene-based active slow surface plasmon polaritons,” Sci. Rep. 5, 8443 (2015).
[Crossref]

S. Zeng, S. Hu, J. Xia, T. Anderson, X.-Q. Dinh, X.-M. Meng, P. Coquet, and K.-T. Yong, “Graphene-MoS2 hybrid nanostructures enhanced surface plasmon resonance biosensors,” Sens. Actuators B Chem. 207, 801–810 (2015).
[Crossref]

X. Lu, L. Zhang, and T. Zhang, “Nanoslit-microcavity-based narrow band absorber for sensing applications,” Opt. Express 23, 20715–20720 (2015).
[Crossref]

H. Wang, Q. Chen, L. Wen, S. Song, X. Hu, and G. Xu, “Titanium-nitride-based integrated plasmonic absorber/emitter for solar thermophotovoltaic application,” Photon. Res. 3, 329–334 (2015).
[Crossref]

2014 (5)

H.-J. Li, L.-L. Wang, B. Sun, Z.-R. Huang, and X. Zhai, “Tunable mid-infrared plasmonic band-pass filter based on a single graphene sheet with cavities,” J. Appl. Phys. 116, 224505 (2014).
[Crossref]

A. Lipatov, A. Varezhnikov, M. Augustin, M. Bruns, M. Sommer, V. Sysoev, A. Kolmakov, and A. Sinitskii, “Intrinsic device-to-device variation in graphene field-effect transistors on a Si/SiO2 substrate as a platform for discriminative gas sensing,” Appl. Phys. Lett. 104, 013114 (2014).
[Crossref]

F. J. Garcia de Abajo, “Graphene plasmonics: challenges and opportunities,” ACS Photon. 1, 135–152 (2014).
[Crossref]

V. R. Shrestha, S.-S. Lee, E.-S. Kim, and D.-Y. Choi, “Aluminum plasmonics based highly transmissive polarization-independent subtractive color filters exploiting a nanopatch array,” Nano Lett. 14, 6672–6678 (2014).
[Crossref]

V. Singh, P. T. Lin, N. Patel, H. Lin, L. Li, Y. Zou, F. Deng, C. Ni, J. Hu, and J. Giammarco, “Mid-infrared materials and devices on a Si platform for optical sensing,” Sci. Technol. Adv. Mater. 15, 014603 (2014).
[Crossref]

2013 (4)

Z. Fang, S. Thongrattanasiri, A. Schlather, Z. Liu, L. Ma, Y. Wang, P. M. Ajayan, P. Nordlander, N. J. Halas, and F. J. García de Abajo, “Gated tunability and hybridization of localized plasmons in nanostructured graphene,” ACS Nano 7, 2388–2395 (2013).
[Crossref]

A. Y. Nikitin, S. Maier, and L. Martin-Moreno, “Special issue on graphene nanophotonics,” J. Opt. 15, 110201 (2013).
[Crossref]

Y. Zhao, X. Hu, G. Chen, X. Zhang, Z. Tan, J. Chen, R. S. Ruoff, Y. Zhu, and Y. Lu, “Infrared biosensors based on graphene plasmonics: modeling,” Phys. Chem. Chem. Phys. 15, 17118–17125 (2013).
[Crossref]

J.-P. Guo, J.-H. Zhu, and X.-G. Huang, “Index sensing characteristics of the plasmonic sensor based on metal-insulator-metal waveguide-coupled structure,” Optoelectron. Lett. 9, 321–324 (2013).
[Crossref]

2012 (8)

I. Choi and Y. Choi, “Plasmonic nanosensors: review and prospect,” IEEE J. Sel. Top. Quantum Electron. 18, 1110–1121 (2012).
[Crossref]

K. Walls, Q. Chen, S. Collins, D. R. Cumming, and T. D. Drysdale, “Automated design, fabrication, and characterization of color matching plasmonic filters,” IEEE Photon. Technol. Lett. 24, 602–604 (2012).
[Crossref]

G. V. Naik, J. L. Schroeder, X. Ni, A. V. Kildishev, T. D. Sands, and A. Boltasseva, “Titanium nitride as a plasmonic material for visible and near-infrared wavelengths,” Opt. Mater. Express 2, 478–489 (2012).
[Crossref]

N. S. Lawand, P. J. French, J. J. Briaire, and J. H. M. Frijns, “Thin titanium nitride films deposited using DC magnetron sputtering used for neural stimulation and sensing purposes,” Procedia Eng. 47, 726–729 (2012).
[Crossref]

B. Wang, X. Zhang, X. Yuan, and J. Teng, “Optical coupling of surface plasmons between graphene sheets,” Appl. Phys. Lett. 100, 131111 (2012).
[Crossref]

Y. Ren, C. Zhu, W. Cai, H. Li, H. Ji, I. Kholmanov, Y. Wu, R. D. Piner, and R. S. Ruoff, “Detection of sulfur dioxide gas with graphene field effect transistor,” Appl. Phys. Lett. 100, 163114 (2012).
[Crossref]

Z. Fei, A. Rodin, G. Andreev, W. Bao, A. McLeod, M. Wagner, L. Zhang, Z. Zhao, M. Thiemens, and G. Dominguez, “Gate-tuning of graphene plasmons revealed by infrared nano-imaging,” Nature 487, 82–85 (2012).
[Crossref]

G. Li, X. Chen, O. Li, C. Shao, Y. Jiang, L. Huang, B. Ni, W. Hu, and W. Lu, “A novel plasmonic resonance sensor based on an infrared perfect absorber,” J. Phys. D 45, 205102 (2012).
[Crossref]

2011 (4)

H. J. Park, T. Xu, J. Y. Lee, A. Ledbetter, and L. J. Guo, “Photonic color filters integrated with organic solar cells for energy harvesting,” ACS Nano 5, 7055–7060 (2011).
[Crossref]

P.-Y. Chen and A. Alu, “Atomically thin surface cloak using graphene monolayers,” ACS Nano 5, 5855–5863 (2011).
[Crossref]

G. V. Naik, J. Kim, and A. Boltasseva, “Oxides and nitrides as alternative plasmonic materials in the optical range,” Opt. Mater. Express 1, 1090–1099 (2011).
[Crossref]

F. H. Koppens, D. E. Chang, and F. J. Garcia de Abajo, “Graphene plasmonics: a platform for strong light-matter interactions,” Nano Lett. 11, 3370–3377 (2011).
[Crossref]

2010 (5)

X. Li and S. Yu, “Extremely high sensitive plasmonic refractive index sensors based on metallic grating,” Plasmonics 5, 389–394 (2010).
[Crossref]

L. Wu, H. Chu, W. Koh, and E. Li, “Highly sensitive graphene biosensors based on surface plasmon resonance,” Opt. Express 18, 14395–14400 (2010).
[Crossref]

N. Liu, M. Mesch, T. Weiss, M. Hentschel, and H. Giessen, “Infrared perfect absorber and its application as plasmonic sensor,” Nano Lett. 10, 2342–2348 (2010).
[Crossref]

C. E. Nilsson, S. Abbas, M. Bennemo, A. Larsson, M. Hämäläinen, and Å. Frostell-Karlsson, “A novel assay for influenza virus quantification using surface plasmon resonance,” Vaccine 28, 759–766 (2010).
[Crossref]

F. Bonaccorso, Z. Sun, T. Hasan, and A. Ferrari, “Graphene photonics and optoelectronics,” Nat. Photonics 4, 611–622 (2010).
[Crossref]

2009 (2)

2008 (2)

G. W. Hanson, “Dyadic Green’s functions and guided surface waves for a surface conductivity model of graphene, ”J. Appl. Phys. 103, 064302 (2008).
[Crossref]

S.-S. Kim, C. Young, and B. Mizaikoff, “Miniaturized mid-infrared sensor technologies,” Anal. Bioanal. Chem. 390, 231–237 (2008).
[Crossref]

2007 (2)

C. K. Bryant, P. T. LaPuma, G. L. Hook, and E. J. Houser, “Chemical agent identification by field-based attenuated total reflectance infrared detection and solid-phase microextraction,” Anal. Chem. 79, 2334–2340 (2007).
[Crossref]

B. Pejcic, P. Eadington, and A. Ross, “Environmental monitoring of hydrocarbons: a chemical sensor perspective,” Environ. Sci. Technol. 41, 6333–6342 (2007).
[Crossref]

2005 (1)

C. J. Koester and A. Moulik, “Trends in environmental analysis,” Anal. Chem. 77, 3737–3754 (2005).
[Crossref]

2004 (1)

M. Karlowatz, M. Kraft, and B. Mizaikoff, “Simultaneous quantitative determination of benzene, toluene, and xylenes in water using mid-infrared evanescent field spectroscopy,” Anal. Chem. 76, 2643–2648 (2004).
[Crossref]

2001 (1)

P. Patsalas and S. Logothetidis, “Optical, electronic, and transport properties of nanocrystalline titanium nitride thin films,” J. Appl. Phys. 90, 4725–4734 (2001).
[Crossref]

1972 (1)

P. B. Johnson and R.-W. Christy, “Optical constants of the noble metals,” Phys. Rev. B 6, 4370 (1972).
[Crossref]

Abbas, S.

C. E. Nilsson, S. Abbas, M. Bennemo, A. Larsson, M. Hämäläinen, and Å. Frostell-Karlsson, “A novel assay for influenza virus quantification using surface plasmon resonance,” Vaccine 28, 759–766 (2010).
[Crossref]

Abdelmonem, M. R.

A. E. Khalil, A. H. El-Saeed, M. A. Ibrahim, M. E. Hashish, M. R. Abdelmonem, M. F. O. Hameed, M. Y. Azab, and S. Obayya, “Highly sensitive photonic crystal fiber biosensor based on titanium nitride,” Opt. Quantum Electron. 50, 158 (2018).
[Crossref]

Abdolhosseini, S.

Ajayan, P. M.

Z. Fang, S. Thongrattanasiri, A. Schlather, Z. Liu, L. Ma, Y. Wang, P. M. Ajayan, P. Nordlander, N. J. Halas, and F. J. García de Abajo, “Gated tunability and hybridization of localized plasmons in nanostructured graphene,” ACS Nano 7, 2388–2395 (2013).
[Crossref]

Akhavan, A.

Alipour, A.

A. Alipour, A. Farmani, and A. Mir, “High sensitivity and tunable nanoscale sensor based on plasmon-induced transparency in plasmonic metasurface,” IEEE Sens. J. 18, 7047–7054 (2018).
[Crossref]

Altug, H.

O. Limaj, D. Etezadi, N. J. Wittenberg, D. Rodrigo, D. Yoo, S.-H. Oh, and H. Altug, “Infrared plasmonic biosensor for real-time and label-free monitoring of lipid membranes,” Nano Lett. 16, 1502–1508 (2016).
[Crossref]

Alu, A.

P.-Y. Chen and A. Alu, “Atomically thin surface cloak using graphene monolayers,” ACS Nano 5, 5855–5863 (2011).
[Crossref]

Anderson, T.

S. Zeng, S. Hu, J. Xia, T. Anderson, X.-Q. Dinh, X.-M. Meng, P. Coquet, and K.-T. Yong, “Graphene-MoS2 hybrid nanostructures enhanced surface plasmon resonance biosensors,” Sens. Actuators B Chem. 207, 801–810 (2015).
[Crossref]

Andreev, G.

Z. Fei, A. Rodin, G. Andreev, W. Bao, A. McLeod, M. Wagner, L. Zhang, Z. Zhao, M. Thiemens, and G. Dominguez, “Gate-tuning of graphene plasmons revealed by infrared nano-imaging,” Nature 487, 82–85 (2012).
[Crossref]

Asgari, S.

S. Asgari, Z. G. Kashani, and N. Granpayeh, “Tunable nano-scale graphene-based devices in mid-infrared wavelengths composed of cylindrical resonators,” J. Opt. 20, 045001 (2018).
[Crossref]

Augustin, M.

A. Lipatov, A. Varezhnikov, M. Augustin, M. Bruns, M. Sommer, V. Sysoev, A. Kolmakov, and A. Sinitskii, “Intrinsic device-to-device variation in graphene field-effect transistors on a Si/SiO2 substrate as a platform for discriminative gas sensing,” Appl. Phys. Lett. 104, 013114 (2014).
[Crossref]

Azab, M. Y.

A. E. Khalil, A. H. El-Saeed, M. A. Ibrahim, M. E. Hashish, M. R. Abdelmonem, M. F. O. Hameed, M. Y. Azab, and S. Obayya, “Highly sensitive photonic crystal fiber biosensor based on titanium nitride,” Opt. Quantum Electron. 50, 158 (2018).
[Crossref]

Baillieul, M.

E. Baudet, A. Gutierrez-Arroyo, M. Baillieul, J. Charrier, P. Němec, L. Bodiou, J. Lemaitre, E. Rinnert, K. Michel, and B. Bureau, “Development of an evanescent optical integrated sensor in the mid-infrared for detection of pollution in groundwater or seawater,” Adv. Device Mater. 3, 23–29 (2017).
[Crossref]

Bao, W.

Z. Fei, A. Rodin, G. Andreev, W. Bao, A. McLeod, M. Wagner, L. Zhang, Z. Zhao, M. Thiemens, and G. Dominguez, “Gate-tuning of graphene plasmons revealed by infrared nano-imaging,” Nature 487, 82–85 (2012).
[Crossref]

Baranzadeh, F.

Baudet, E.

E. Baudet, A. Gutierrez-Arroyo, M. Baillieul, J. Charrier, P. Němec, L. Bodiou, J. Lemaitre, E. Rinnert, K. Michel, and B. Bureau, “Development of an evanescent optical integrated sensor in the mid-infrared for detection of pollution in groundwater or seawater,” Adv. Device Mater. 3, 23–29 (2017).
[Crossref]

Bennemo, M.

C. E. Nilsson, S. Abbas, M. Bennemo, A. Larsson, M. Hämäläinen, and Å. Frostell-Karlsson, “A novel assay for influenza virus quantification using surface plasmon resonance,” Vaccine 28, 759–766 (2010).
[Crossref]

Bodiou, L.

E. Baudet, A. Gutierrez-Arroyo, M. Baillieul, J. Charrier, P. Němec, L. Bodiou, J. Lemaitre, E. Rinnert, K. Michel, and B. Bureau, “Development of an evanescent optical integrated sensor in the mid-infrared for detection of pollution in groundwater or seawater,” Adv. Device Mater. 3, 23–29 (2017).
[Crossref]

Boltasseva, A.

Bonaccorso, F.

F. Bonaccorso, Z. Sun, T. Hasan, and A. Ferrari, “Graphene photonics and optoelectronics,” Nat. Photonics 4, 611–622 (2010).
[Crossref]

Briaire, J. J.

N. S. Lawand, P. J. French, J. J. Briaire, and J. H. M. Frijns, “Thin titanium nitride films deposited using DC magnetron sputtering used for neural stimulation and sensing purposes,” Procedia Eng. 47, 726–729 (2012).
[Crossref]

Britton, W.

Bruns, M.

A. Lipatov, A. Varezhnikov, M. Augustin, M. Bruns, M. Sommer, V. Sysoev, A. Kolmakov, and A. Sinitskii, “Intrinsic device-to-device variation in graphene field-effect transistors on a Si/SiO2 substrate as a platform for discriminative gas sensing,” Appl. Phys. Lett. 104, 013114 (2014).
[Crossref]

Bryant, C. K.

C. K. Bryant, P. T. LaPuma, G. L. Hook, and E. J. Houser, “Chemical agent identification by field-based attenuated total reflectance infrared detection and solid-phase microextraction,” Anal. Chem. 79, 2334–2340 (2007).
[Crossref]

Bureau, B.

E. Baudet, A. Gutierrez-Arroyo, M. Baillieul, J. Charrier, P. Němec, L. Bodiou, J. Lemaitre, E. Rinnert, K. Michel, and B. Bureau, “Development of an evanescent optical integrated sensor in the mid-infrared for detection of pollution in groundwater or seawater,” Adv. Device Mater. 3, 23–29 (2017).
[Crossref]

Cai, W.

Y. Ren, C. Zhu, W. Cai, H. Li, H. Ji, I. Kholmanov, Y. Wu, R. D. Piner, and R. S. Ruoff, “Detection of sulfur dioxide gas with graphene field effect transistor,” Appl. Phys. Lett. 100, 163114 (2012).
[Crossref]

Cao, B.

Z. Tao, H. Dong, Y. Duan, J. Liu, and B. Cao, “Tunable coupled terahertz surface plasmon polaritons in graphene metamaterials,” J. Opt. 21, 045107 (2019).
[Crossref]

Cha, T.-H.

D.-G. Park, T.-H. Cha, K.-Y. Lim, H.-J. Cho, T.-K. Kim, S.-A. Jang, Y.-S. Suh, V. Misra, I.-S. Yeo, and J.-S. Roh, “Robust ternary metal gate electrodes for dual gate CMOS devices,” in International Electron Devices Meeting. Technical Digest (Cat. No. 01CH37224) (IEEE, 2001), pp. 30.36.31–30.36.34.

Chang, D. E.

F. H. Koppens, D. E. Chang, and F. J. Garcia de Abajo, “Graphene plasmonics: a platform for strong light-matter interactions,” Nano Lett. 11, 3370–3377 (2011).
[Crossref]

Charrier, J.

E. Baudet, A. Gutierrez-Arroyo, M. Baillieul, J. Charrier, P. Němec, L. Bodiou, J. Lemaitre, E. Rinnert, K. Michel, and B. Bureau, “Development of an evanescent optical integrated sensor in the mid-infrared for detection of pollution in groundwater or seawater,” Adv. Device Mater. 3, 23–29 (2017).
[Crossref]

Chen, G.

Y. Zhao, X. Hu, G. Chen, X. Zhang, Z. Tan, J. Chen, R. S. Ruoff, Y. Zhu, and Y. Lu, “Infrared biosensors based on graphene plasmonics: modeling,” Phys. Chem. Chem. Phys. 15, 17118–17125 (2013).
[Crossref]

Chen, J.

Y. Zhao, X. Hu, G. Chen, X. Zhang, Z. Tan, J. Chen, R. S. Ruoff, Y. Zhu, and Y. Lu, “Infrared biosensors based on graphene plasmonics: modeling,” Phys. Chem. Chem. Phys. 15, 17118–17125 (2013).
[Crossref]

Chen, K.

P. Sun, F. Xia, L. Liu, L. Jiao, K. Chen, M. Li, Q. Liu, and M. Yun, “Tunable graphene-based infrared perfect absorber for sensing,” in IEEE International Conference on Manipulation, Manufacturing and Measurement on the Nanoscale (3M-NANO) (IEEE, 2017), pp. 83–86.

Chen, P.-Y.

P.-Y. Chen and A. Alu, “Atomically thin surface cloak using graphene monolayers,” ACS Nano 5, 5855–5863 (2011).
[Crossref]

Chen, Q.

H. Wang, Q. Chen, L. Wen, S. Song, X. Hu, and G. Xu, “Titanium-nitride-based integrated plasmonic absorber/emitter for solar thermophotovoltaic application,” Photon. Res. 3, 329–334 (2015).
[Crossref]

K. Walls, Q. Chen, S. Collins, D. R. Cumming, and T. D. Drysdale, “Automated design, fabrication, and characterization of color matching plasmonic filters,” IEEE Photon. Technol. Lett. 24, 602–604 (2012).
[Crossref]

Chen, X.

Z. Zhao, G. Li, F. Yu, H. Yang, X. Chen, and W. Lu, “Sub-wavelength grating enhanced ultra-narrow graphene perfect absorber,” Plasmonics 13, 2267–2272 (2018).
[Crossref]

G. Li, X. Chen, O. Li, C. Shao, Y. Jiang, L. Huang, B. Ni, W. Hu, and W. Lu, “A novel plasmonic resonance sensor based on an infrared perfect absorber,” J. Phys. D 45, 205102 (2012).
[Crossref]

G. Li, X. Wu, Y. Jiang, C. Shao, L. Huang, X. Chen, W. Hu, and W. Lu, “The improvement of figure of merit with infrared perfect absorber for plasmonic resonance sensing,” in 12th International Conference on Numerical Simulation of Optoelectronic Devices (NUSOD) (IEEE, 2012), pp. 3–4.

Chen, Y.

Chen, Y.-B.

Chmielak, B.

G. Dabos, A. Manolis, A. Giesecke, C. Porschatis, B. Chmielak, T. Wahlbrink, N. Pleros, and D. Tsiokos, “TM grating coupler on low-loss LPCVD based Si3N4 waveguide platform,” Opt. Commun. 405, 35–38 (2017).
[Crossref]

Cho, H.-J.

D.-G. Park, T.-H. Cha, K.-Y. Lim, H.-J. Cho, T.-K. Kim, S.-A. Jang, Y.-S. Suh, V. Misra, I.-S. Yeo, and J.-S. Roh, “Robust ternary metal gate electrodes for dual gate CMOS devices,” in International Electron Devices Meeting. Technical Digest (Cat. No. 01CH37224) (IEEE, 2001), pp. 30.36.31–30.36.34.

Choi, D.-Y.

V. R. Shrestha, S.-S. Lee, E.-S. Kim, and D.-Y. Choi, “Aluminum plasmonics based highly transmissive polarization-independent subtractive color filters exploiting a nanopatch array,” Nano Lett. 14, 6672–6678 (2014).
[Crossref]

Choi, I.

I. Choi and Y. Choi, “Plasmonic nanosensors: review and prospect,” IEEE J. Sel. Top. Quantum Electron. 18, 1110–1121 (2012).
[Crossref]

Choi, Y.

I. Choi and Y. Choi, “Plasmonic nanosensors: review and prospect,” IEEE J. Sel. Top. Quantum Electron. 18, 1110–1121 (2012).
[Crossref]

Christy, R.-W.

P. B. Johnson and R.-W. Christy, “Optical constants of the noble metals,” Phys. Rev. B 6, 4370 (1972).
[Crossref]

Chu, H.

Ciattoni, A.

A. De Marcellis, E. Palange, M. Janneh, C. Rizza, A. Ciattoni, and S. Mengali, “Design optimisation of plasmonic metasurfaces for mid-infrared high-sensitivity chemical sensing,” Plasmonics 12, 293–298 (2017).
[Crossref]

Collins, S.

K. Walls, Q. Chen, S. Collins, D. R. Cumming, and T. D. Drysdale, “Automated design, fabrication, and characterization of color matching plasmonic filters,” IEEE Photon. Technol. Lett. 24, 602–604 (2012).
[Crossref]

Coquet, P.

S. Zeng, S. Hu, J. Xia, T. Anderson, X.-Q. Dinh, X.-M. Meng, P. Coquet, and K.-T. Yong, “Graphene-MoS2 hybrid nanostructures enhanced surface plasmon resonance biosensors,” Sens. Actuators B Chem. 207, 801–810 (2015).
[Crossref]

Cumming, D. R.

K. Walls, Q. Chen, S. Collins, D. R. Cumming, and T. D. Drysdale, “Automated design, fabrication, and characterization of color matching plasmonic filters,” IEEE Photon. Technol. Lett. 24, 602–604 (2012).
[Crossref]

Dabos, G.

G. Dabos, A. Manolis, A. Giesecke, C. Porschatis, B. Chmielak, T. Wahlbrink, N. Pleros, and D. Tsiokos, “TM grating coupler on low-loss LPCVD based Si3N4 waveguide platform,” Opt. Commun. 405, 35–38 (2017).
[Crossref]

Dal Negro, L.

Danaie, M.

M. Danaie and A. Shahzadi, “Design of a high-resolution metal-insulator–metal plasmonic refractive index sensor based on a ring-shaped Si resonator,” Plasmonics, 1–13 (2019).
[Crossref]

De Marcellis, A.

A. De Marcellis, E. Palange, M. Janneh, C. Rizza, A. Ciattoni, and S. Mengali, “Design optimisation of plasmonic metasurfaces for mid-infrared high-sensitivity chemical sensing,” Plasmonics 12, 293–298 (2017).
[Crossref]

Deng, F.

V. Singh, P. T. Lin, N. Patel, H. Lin, L. Li, Y. Zou, F. Deng, C. Ni, J. Hu, and J. Giammarco, “Mid-infrared materials and devices on a Si platform for optical sensing,” Sci. Technol. Adv. Mater. 15, 014603 (2014).
[Crossref]

Dinh, X.-Q.

S. Zeng, S. Hu, J. Xia, T. Anderson, X.-Q. Dinh, X.-M. Meng, P. Coquet, and K.-T. Yong, “Graphene-MoS2 hybrid nanostructures enhanced surface plasmon resonance biosensors,” Sens. Actuators B Chem. 207, 801–810 (2015).
[Crossref]

Dominguez, G.

Z. Fei, A. Rodin, G. Andreev, W. Bao, A. McLeod, M. Wagner, L. Zhang, Z. Zhao, M. Thiemens, and G. Dominguez, “Gate-tuning of graphene plasmons revealed by infrared nano-imaging,” Nature 487, 82–85 (2012).
[Crossref]

Dong, H.

Z. Tao, H. Dong, Y. Duan, J. Liu, and B. Cao, “Tunable coupled terahertz surface plasmon polaritons in graphene metamaterials,” J. Opt. 21, 045107 (2019).
[Crossref]

Drysdale, T. D.

K. Walls, Q. Chen, S. Collins, D. R. Cumming, and T. D. Drysdale, “Automated design, fabrication, and characterization of color matching plasmonic filters,” IEEE Photon. Technol. Lett. 24, 602–604 (2012).
[Crossref]

Duan, Y.

Z. Tao, H. Dong, Y. Duan, J. Liu, and B. Cao, “Tunable coupled terahertz surface plasmon polaritons in graphene metamaterials,” J. Opt. 21, 045107 (2019).
[Crossref]

Eadington, P.

B. Pejcic, P. Eadington, and A. Ross, “Environmental monitoring of hydrocarbons: a chemical sensor perspective,” Environ. Sci. Technol. 41, 6333–6342 (2007).
[Crossref]

El-Saeed, A. H.

A. E. Khalil, A. H. El-Saeed, M. A. Ibrahim, M. E. Hashish, M. R. Abdelmonem, M. F. O. Hameed, M. Y. Azab, and S. Obayya, “Highly sensitive photonic crystal fiber biosensor based on titanium nitride,” Opt. Quantum Electron. 50, 158 (2018).
[Crossref]

Ershov, A.

N. Venugopal, V. Gerasimov, A. Ershov, S. Karpov, and S. Polyutov, “Titanium nitride as light trapping plasmonic material in silicon solar cell,” Opt. Mater. 72, 397–402 (2017).
[Crossref]

Etezadi, D.

O. Limaj, D. Etezadi, N. J. Wittenberg, D. Rodrigo, D. Yoo, S.-H. Oh, and H. Altug, “Infrared plasmonic biosensor for real-time and label-free monitoring of lipid membranes,” Nano Lett. 16, 1502–1508 (2016).
[Crossref]

Fang, Z.

Z. Fang, S. Thongrattanasiri, A. Schlather, Z. Liu, L. Ma, Y. Wang, P. M. Ajayan, P. Nordlander, N. J. Halas, and F. J. García de Abajo, “Gated tunability and hybridization of localized plasmons in nanostructured graphene,” ACS Nano 7, 2388–2395 (2013).
[Crossref]

Farmani, A.

A. Farmani and A. Mir, “Graphene sensor based on surface plasmon resonance for optical scanning,” IEEE Photon. Technol. Lett. 31, 643–646 (2019).
[Crossref]

A. Alipour, A. Farmani, and A. Mir, “High sensitivity and tunable nanoscale sensor based on plasmon-induced transparency in plasmonic metasurface,” IEEE Sens. J. 18, 7047–7054 (2018).
[Crossref]

Fei, Z.

Z. Fei, A. Rodin, G. Andreev, W. Bao, A. McLeod, M. Wagner, L. Zhang, Z. Zhao, M. Thiemens, and G. Dominguez, “Gate-tuning of graphene plasmons revealed by infrared nano-imaging,” Nature 487, 82–85 (2012).
[Crossref]

Ferrari, A.

F. Bonaccorso, Z. Sun, T. Hasan, and A. Ferrari, “Graphene photonics and optoelectronics,” Nat. Photonics 4, 611–622 (2010).
[Crossref]

French, P. J.

N. S. Lawand, P. J. French, J. J. Briaire, and J. H. M. Frijns, “Thin titanium nitride films deposited using DC magnetron sputtering used for neural stimulation and sensing purposes,” Procedia Eng. 47, 726–729 (2012).
[Crossref]

Frijns, J. H. M.

N. S. Lawand, P. J. French, J. J. Briaire, and J. H. M. Frijns, “Thin titanium nitride films deposited using DC magnetron sputtering used for neural stimulation and sensing purposes,” Procedia Eng. 47, 726–729 (2012).
[Crossref]

Frostell-Karlsson, Å.

C. E. Nilsson, S. Abbas, M. Bennemo, A. Larsson, M. Hämäläinen, and Å. Frostell-Karlsson, “A novel assay for influenza virus quantification using surface plasmon resonance,” Vaccine 28, 759–766 (2010).
[Crossref]

Garcia de Abajo, F. J.

F. J. Garcia de Abajo, “Graphene plasmonics: challenges and opportunities,” ACS Photon. 1, 135–152 (2014).
[Crossref]

F. H. Koppens, D. E. Chang, and F. J. Garcia de Abajo, “Graphene plasmonics: a platform for strong light-matter interactions,” Nano Lett. 11, 3370–3377 (2011).
[Crossref]

García de Abajo, F. J.

Z. Fang, S. Thongrattanasiri, A. Schlather, Z. Liu, L. Ma, Y. Wang, P. M. Ajayan, P. Nordlander, N. J. Halas, and F. J. García de Abajo, “Gated tunability and hybridization of localized plasmons in nanostructured graphene,” ACS Nano 7, 2388–2395 (2013).
[Crossref]

Gerasimov, V.

N. Venugopal, V. Gerasimov, A. Ershov, S. Karpov, and S. Polyutov, “Titanium nitride as light trapping plasmonic material in silicon solar cell,” Opt. Mater. 72, 397–402 (2017).
[Crossref]

Ghafoorifard, H.

Ghahraloud, H.

Giammarco, J.

V. Singh, P. T. Lin, N. Patel, H. Lin, L. Li, Y. Zou, F. Deng, C. Ni, J. Hu, and J. Giammarco, “Mid-infrared materials and devices on a Si platform for optical sensing,” Sci. Technol. Adv. Mater. 15, 014603 (2014).
[Crossref]

Giesecke, A.

G. Dabos, A. Manolis, A. Giesecke, C. Porschatis, B. Chmielak, T. Wahlbrink, N. Pleros, and D. Tsiokos, “TM grating coupler on low-loss LPCVD based Si3N4 waveguide platform,” Opt. Commun. 405, 35–38 (2017).
[Crossref]

Giessen, H.

N. Liu, M. Mesch, T. Weiss, M. Hentschel, and H. Giessen, “Infrared perfect absorber and its application as plasmonic sensor,” Nano Lett. 10, 2342–2348 (2010).
[Crossref]

Granpayeh, N.

S. Asgari, Z. G. Kashani, and N. Granpayeh, “Tunable nano-scale graphene-based devices in mid-infrared wavelengths composed of cylindrical resonators,” J. Opt. 20, 045001 (2018).
[Crossref]

Gu, M.

H. Lu, C. Zeng, Q. Zhang, X. Liu, M. M. Hossain, P. Reineck, and M. Gu, “Graphene-based active slow surface plasmon polaritons,” Sci. Rep. 5, 8443 (2015).
[Crossref]

Guo, C.

R. Yang, W. Xu, Z. Zhu, J. Zhang, K. Liu, C. Guo, and X. Yuan, “Tuneable infrared perfect absorber based on spatially separated double-layer graphene,” J. Opt. 21, 085002 (2019).
[Crossref]

Guo, J.-P.

J.-P. Guo, J.-H. Zhu, and X.-G. Huang, “Index sensing characteristics of the plasmonic sensor based on metal-insulator-metal waveguide-coupled structure,” Optoelectron. Lett. 9, 321–324 (2013).
[Crossref]

Guo, L. J.

H. J. Park, T. Xu, J. Y. Lee, A. Ledbetter, and L. J. Guo, “Photonic color filters integrated with organic solar cells for energy harvesting,” ACS Nano 5, 7055–7060 (2011).
[Crossref]

Guo, Z.

W. Yue, Z. Wang, Y. Yang, J. Han, J. Li, Z. Guo, H. Tan, and X.-X. Zhang, “High performance infrared plasmonic metamaterial absorbers and their applications to thin-film sensing,” Plasmonics 11, 1557–1563 (2016).
[Crossref]

Gutierrez-Arroyo, A.

E. Baudet, A. Gutierrez-Arroyo, M. Baillieul, J. Charrier, P. Němec, L. Bodiou, J. Lemaitre, E. Rinnert, K. Michel, and B. Bureau, “Development of an evanescent optical integrated sensor in the mid-infrared for detection of pollution in groundwater or seawater,” Adv. Device Mater. 3, 23–29 (2017).
[Crossref]

Habibiyan, H.

Hajati, M.

Hajati, Y.

Halas, N. J.

Z. Fang, S. Thongrattanasiri, A. Schlather, Z. Liu, L. Ma, Y. Wang, P. M. Ajayan, P. Nordlander, N. J. Halas, and F. J. García de Abajo, “Gated tunability and hybridization of localized plasmons in nanostructured graphene,” ACS Nano 7, 2388–2395 (2013).
[Crossref]

Hämäläinen, M.

C. E. Nilsson, S. Abbas, M. Bennemo, A. Larsson, M. Hämäläinen, and Å. Frostell-Karlsson, “A novel assay for influenza virus quantification using surface plasmon resonance,” Vaccine 28, 759–766 (2010).
[Crossref]

Hameed, M. F. O.

A. E. Khalil, A. H. El-Saeed, M. A. Ibrahim, M. E. Hashish, M. R. Abdelmonem, M. F. O. Hameed, M. Y. Azab, and S. Obayya, “Highly sensitive photonic crystal fiber biosensor based on titanium nitride,” Opt. Quantum Electron. 50, 158 (2018).
[Crossref]

Han, J.

W. Yue, Z. Wang, Y. Yang, J. Han, J. Li, Z. Guo, H. Tan, and X.-X. Zhang, “High performance infrared plasmonic metamaterial absorbers and their applications to thin-film sensing,” Plasmonics 11, 1557–1563 (2016).
[Crossref]

Han, X.

X. Yan, T. Wang, X. Han, S. Xiao, Y. Zhu, and Y. Wang, “High sensitivity nanoplasmonic sensor based on plasmon-induced transparency in a graphene nanoribbon waveguide coupled with detuned graphene square-nanoring resonators,” Plasmonics 12, 1449–1455 (2017).
[Crossref]

Hanson, G. W.

G. W. Hanson, “Dyadic Green’s functions and guided surface waves for a surface conductivity model of graphene, ”J. Appl. Phys. 103, 064302 (2008).
[Crossref]

Hasan, T.

F. Bonaccorso, Z. Sun, T. Hasan, and A. Ferrari, “Graphene photonics and optoelectronics,” Nat. Photonics 4, 611–622 (2010).
[Crossref]

Hashish, M. E.

A. E. Khalil, A. H. El-Saeed, M. A. Ibrahim, M. E. Hashish, M. R. Abdelmonem, M. F. O. Hameed, M. Y. Azab, and S. Obayya, “Highly sensitive photonic crystal fiber biosensor based on titanium nitride,” Opt. Quantum Electron. 50, 158 (2018).
[Crossref]

Hentschel, M.

N. Liu, M. Mesch, T. Weiss, M. Hentschel, and H. Giessen, “Infrared perfect absorber and its application as plasmonic sensor,” Nano Lett. 10, 2342–2348 (2010).
[Crossref]

Hook, G. L.

C. K. Bryant, P. T. LaPuma, G. L. Hook, and E. J. Houser, “Chemical agent identification by field-based attenuated total reflectance infrared detection and solid-phase microextraction,” Anal. Chem. 79, 2334–2340 (2007).
[Crossref]

Hossain, M. M.

H. Lu, C. Zeng, Q. Zhang, X. Liu, M. M. Hossain, P. Reineck, and M. Gu, “Graphene-based active slow surface plasmon polaritons,” Sci. Rep. 5, 8443 (2015).
[Crossref]

Houser, E. J.

C. K. Bryant, P. T. LaPuma, G. L. Hook, and E. J. Houser, “Chemical agent identification by field-based attenuated total reflectance infrared detection and solid-phase microextraction,” Anal. Chem. 79, 2334–2340 (2007).
[Crossref]

Hu, J.

V. Singh, P. T. Lin, N. Patel, H. Lin, L. Li, Y. Zou, F. Deng, C. Ni, J. Hu, and J. Giammarco, “Mid-infrared materials and devices on a Si platform for optical sensing,” Sci. Technol. Adv. Mater. 15, 014603 (2014).
[Crossref]

Hu, S.

S. Zeng, S. Hu, J. Xia, T. Anderson, X.-Q. Dinh, X.-M. Meng, P. Coquet, and K.-T. Yong, “Graphene-MoS2 hybrid nanostructures enhanced surface plasmon resonance biosensors,” Sens. Actuators B Chem. 207, 801–810 (2015).
[Crossref]

Hu, W.

G. Li, X. Chen, O. Li, C. Shao, Y. Jiang, L. Huang, B. Ni, W. Hu, and W. Lu, “A novel plasmonic resonance sensor based on an infrared perfect absorber,” J. Phys. D 45, 205102 (2012).
[Crossref]

G. Li, X. Wu, Y. Jiang, C. Shao, L. Huang, X. Chen, W. Hu, and W. Lu, “The improvement of figure of merit with infrared perfect absorber for plasmonic resonance sensing,” in 12th International Conference on Numerical Simulation of Optoelectronic Devices (NUSOD) (IEEE, 2012), pp. 3–4.

Hu, X.

H. Wang, Q. Chen, L. Wen, S. Song, X. Hu, and G. Xu, “Titanium-nitride-based integrated plasmonic absorber/emitter for solar thermophotovoltaic application,” Photon. Res. 3, 329–334 (2015).
[Crossref]

Y. Zhao, X. Hu, G. Chen, X. Zhang, Z. Tan, J. Chen, R. S. Ruoff, Y. Zhu, and Y. Lu, “Infrared biosensors based on graphene plasmonics: modeling,” Phys. Chem. Chem. Phys. 15, 17118–17125 (2013).
[Crossref]

Huang, L.

G. Li, X. Chen, O. Li, C. Shao, Y. Jiang, L. Huang, B. Ni, W. Hu, and W. Lu, “A novel plasmonic resonance sensor based on an infrared perfect absorber,” J. Phys. D 45, 205102 (2012).
[Crossref]

G. Li, X. Wu, Y. Jiang, C. Shao, L. Huang, X. Chen, W. Hu, and W. Lu, “The improvement of figure of merit with infrared perfect absorber for plasmonic resonance sensing,” in 12th International Conference on Numerical Simulation of Optoelectronic Devices (NUSOD) (IEEE, 2012), pp. 3–4.

Huang, X.-G.

J.-P. Guo, J.-H. Zhu, and X.-G. Huang, “Index sensing characteristics of the plasmonic sensor based on metal-insulator-metal waveguide-coupled structure,” Optoelectron. Lett. 9, 321–324 (2013).
[Crossref]

Huang, Z.-R.

H.-J. Li, L.-L. Wang, B. Sun, Z.-R. Huang, and X. Zhai, “Tunable mid-infrared plasmonic band-pass filter based on a single graphene sheet with cavities,” J. Appl. Phys. 116, 224505 (2014).
[Crossref]

Ibrahim, M. A.

A. E. Khalil, A. H. El-Saeed, M. A. Ibrahim, M. E. Hashish, M. R. Abdelmonem, M. F. O. Hameed, M. Y. Azab, and S. Obayya, “Highly sensitive photonic crystal fiber biosensor based on titanium nitride,” Opt. Quantum Electron. 50, 158 (2018).
[Crossref]

Jang, S.-A.

D.-G. Park, T.-H. Cha, K.-Y. Lim, H.-J. Cho, T.-K. Kim, S.-A. Jang, Y.-S. Suh, V. Misra, I.-S. Yeo, and J.-S. Roh, “Robust ternary metal gate electrodes for dual gate CMOS devices,” in International Electron Devices Meeting. Technical Digest (Cat. No. 01CH37224) (IEEE, 2001), pp. 30.36.31–30.36.34.

Janneh, M.

A. De Marcellis, E. Palange, M. Janneh, C. Rizza, A. Ciattoni, and S. Mengali, “Design optimisation of plasmonic metasurfaces for mid-infrared high-sensitivity chemical sensing,” Plasmonics 12, 293–298 (2017).
[Crossref]

Ji, H.

Y. Ren, C. Zhu, W. Cai, H. Li, H. Ji, I. Kholmanov, Y. Wu, R. D. Piner, and R. S. Ruoff, “Detection of sulfur dioxide gas with graphene field effect transistor,” Appl. Phys. Lett. 100, 163114 (2012).
[Crossref]

Jiang, Y.

G. Li, X. Chen, O. Li, C. Shao, Y. Jiang, L. Huang, B. Ni, W. Hu, and W. Lu, “A novel plasmonic resonance sensor based on an infrared perfect absorber,” J. Phys. D 45, 205102 (2012).
[Crossref]

G. Li, X. Wu, Y. Jiang, C. Shao, L. Huang, X. Chen, W. Hu, and W. Lu, “The improvement of figure of merit with infrared perfect absorber for plasmonic resonance sensing,” in 12th International Conference on Numerical Simulation of Optoelectronic Devices (NUSOD) (IEEE, 2012), pp. 3–4.

Jiao, L.

P. Sun, F. Xia, L. Liu, L. Jiao, K. Chen, M. Li, Q. Liu, and M. Yun, “Tunable graphene-based infrared perfect absorber for sensing,” in IEEE International Conference on Manipulation, Manufacturing and Measurement on the Nanoscale (3M-NANO) (IEEE, 2017), pp. 83–86.

Jin, X. R.

Y. Liu, Y. Q. Zhang, X. R. Jin, S. Zhang, and Y. P. Lee, “Dual-band infrared perfect absorber for plasmonic sensor based on the electromagnetically induced reflection-like effect,” Opt. Commun. 371, 173–177 (2016).
[Crossref]

Johnson, P. B.

P. B. Johnson and R.-W. Christy, “Optical constants of the noble metals,” Phys. Rev. B 6, 4370 (1972).
[Crossref]

Karlowatz, M.

M. Karlowatz, M. Kraft, and B. Mizaikoff, “Simultaneous quantitative determination of benzene, toluene, and xylenes in water using mid-infrared evanescent field spectroscopy,” Anal. Chem. 76, 2643–2648 (2004).
[Crossref]

Karpov, S.

N. Venugopal, V. Gerasimov, A. Ershov, S. Karpov, and S. Polyutov, “Titanium nitride as light trapping plasmonic material in silicon solar cell,” Opt. Mater. 72, 397–402 (2017).
[Crossref]

Kashani, Z. G.

S. Asgari, Z. G. Kashani, and N. Granpayeh, “Tunable nano-scale graphene-based devices in mid-infrared wavelengths composed of cylindrical resonators,” J. Opt. 20, 045001 (2018).
[Crossref]

Kazemi, A. H.

A. H. Kazemi, F. F. Mahani, and A. Mokhtari, “Peak amplitude enhancement of photoconductive antenna using periodic nanoslit and graphene in the THz band,” Optik 185, 114–120 (2019).
[Crossref]

Khalil, A. E.

A. E. Khalil, A. H. El-Saeed, M. A. Ibrahim, M. E. Hashish, M. R. Abdelmonem, M. F. O. Hameed, M. Y. Azab, and S. Obayya, “Highly sensitive photonic crystal fiber biosensor based on titanium nitride,” Opt. Quantum Electron. 50, 158 (2018).
[Crossref]

Khezripour, Z.

Z. Khezripour, F. F. Mahani, and A. Mokhtari, “Performance improvement of ultrathin organic solar cells utilizing light-trapping aluminum-titanium nitride nanosquare arrays,” Opt. Mater. 84, 651–657 (2018).
[Crossref]

Z. Khezripour, F. F. Mahani, and A. Mokhtari, “Double-sided TiO2 nano-gratings for broadband performance enhancement of organic solar cells,” J. Opt. Soc. Am. B 35, 2478–2483 (2018).
[Crossref]

Z. Khezripour, F. F. Mahani, and A. Mokhtari, “Optimized design of silicon-based moth eye nanostructures for thin film solar cells,” in 3rd Conference on Swarm Intelligence and Evolutionary Computation (CSIEC) (2018).

Kholmanov, I.

Y. Ren, C. Zhu, W. Cai, H. Li, H. Ji, I. Kholmanov, Y. Wu, R. D. Piner, and R. S. Ruoff, “Detection of sulfur dioxide gas with graphene field effect transistor,” Appl. Phys. Lett. 100, 163114 (2012).
[Crossref]

Kildishev, A. V.

Kim, E.-S.

V. R. Shrestha, S.-S. Lee, E.-S. Kim, and D.-Y. Choi, “Aluminum plasmonics based highly transmissive polarization-independent subtractive color filters exploiting a nanopatch array,” Nano Lett. 14, 6672–6678 (2014).
[Crossref]

Kim, J.

Kim, S.-S.

S.-S. Kim, C. Young, and B. Mizaikoff, “Miniaturized mid-infrared sensor technologies,” Anal. Bioanal. Chem. 390, 231–237 (2008).
[Crossref]

Kim, T.-K.

D.-G. Park, T.-H. Cha, K.-Y. Lim, H.-J. Cho, T.-K. Kim, S.-A. Jang, Y.-S. Suh, V. Misra, I.-S. Yeo, and J.-S. Roh, “Robust ternary metal gate electrodes for dual gate CMOS devices,” in International Electron Devices Meeting. Technical Digest (Cat. No. 01CH37224) (IEEE, 2001), pp. 30.36.31–30.36.34.

Koester, C. J.

C. J. Koester and A. Moulik, “Trends in environmental analysis,” Anal. Chem. 77, 3737–3754 (2005).
[Crossref]

Koh, W.

Kolmakov, A.

A. Lipatov, A. Varezhnikov, M. Augustin, M. Bruns, M. Sommer, V. Sysoev, A. Kolmakov, and A. Sinitskii, “Intrinsic device-to-device variation in graphene field-effect transistors on a Si/SiO2 substrate as a platform for discriminative gas sensing,” Appl. Phys. Lett. 104, 013114 (2014).
[Crossref]

Koppens, F. H.

F. H. Koppens, D. E. Chang, and F. J. Garcia de Abajo, “Graphene plasmonics: a platform for strong light-matter interactions,” Nano Lett. 11, 3370–3377 (2011).
[Crossref]

Kraft, M.

M. Karlowatz, M. Kraft, and B. Mizaikoff, “Simultaneous quantitative determination of benzene, toluene, and xylenes in water using mid-infrared evanescent field spectroscopy,” Anal. Chem. 76, 2643–2648 (2004).
[Crossref]

LaPuma, P. T.

C. K. Bryant, P. T. LaPuma, G. L. Hook, and E. J. Houser, “Chemical agent identification by field-based attenuated total reflectance infrared detection and solid-phase microextraction,” Anal. Chem. 79, 2334–2340 (2007).
[Crossref]

Larsson, A.

C. E. Nilsson, S. Abbas, M. Bennemo, A. Larsson, M. Hämäläinen, and Å. Frostell-Karlsson, “A novel assay for influenza virus quantification using surface plasmon resonance,” Vaccine 28, 759–766 (2010).
[Crossref]

Lavrinenko, A.

Lawand, N. S.

N. S. Lawand, P. J. French, J. J. Briaire, and J. H. M. Frijns, “Thin titanium nitride films deposited using DC magnetron sputtering used for neural stimulation and sensing purposes,” Procedia Eng. 47, 726–729 (2012).
[Crossref]

Ledbetter, A.

H. J. Park, T. Xu, J. Y. Lee, A. Ledbetter, and L. J. Guo, “Photonic color filters integrated with organic solar cells for energy harvesting,” ACS Nano 5, 7055–7060 (2011).
[Crossref]

Lee, J. Y.

H. J. Park, T. Xu, J. Y. Lee, A. Ledbetter, and L. J. Guo, “Photonic color filters integrated with organic solar cells for energy harvesting,” ACS Nano 5, 7055–7060 (2011).
[Crossref]

Lee, S.-S.

V. R. Shrestha, S.-S. Lee, E.-S. Kim, and D.-Y. Choi, “Aluminum plasmonics based highly transmissive polarization-independent subtractive color filters exploiting a nanopatch array,” Nano Lett. 14, 6672–6678 (2014).
[Crossref]

Lee, Y. P.

Y. Liu, Y. Q. Zhang, X. R. Jin, S. Zhang, and Y. P. Lee, “Dual-band infrared perfect absorber for plasmonic sensor based on the electromagnetically induced reflection-like effect,” Opt. Commun. 371, 173–177 (2016).
[Crossref]

Lemaitre, J.

E. Baudet, A. Gutierrez-Arroyo, M. Baillieul, J. Charrier, P. Němec, L. Bodiou, J. Lemaitre, E. Rinnert, K. Michel, and B. Bureau, “Development of an evanescent optical integrated sensor in the mid-infrared for detection of pollution in groundwater or seawater,” Adv. Device Mater. 3, 23–29 (2017).
[Crossref]

Li, E.

Li, G.

Z. Zhao, G. Li, F. Yu, H. Yang, X. Chen, and W. Lu, “Sub-wavelength grating enhanced ultra-narrow graphene perfect absorber,” Plasmonics 13, 2267–2272 (2018).
[Crossref]

G. Li, X. Chen, O. Li, C. Shao, Y. Jiang, L. Huang, B. Ni, W. Hu, and W. Lu, “A novel plasmonic resonance sensor based on an infrared perfect absorber,” J. Phys. D 45, 205102 (2012).
[Crossref]

G. Li, X. Wu, Y. Jiang, C. Shao, L. Huang, X. Chen, W. Hu, and W. Lu, “The improvement of figure of merit with infrared perfect absorber for plasmonic resonance sensing,” in 12th International Conference on Numerical Simulation of Optoelectronic Devices (NUSOD) (IEEE, 2012), pp. 3–4.

Li, H.

H. Li, L. Wang, and X. Zhai, “Tunable graphene-based mid-infrared plasmonic wide-angle narrowband perfect absorber,” Sci. Rep. 6, 36651 (2016).
[Crossref]

Y. Ren, C. Zhu, W. Cai, H. Li, H. Ji, I. Kholmanov, Y. Wu, R. D. Piner, and R. S. Ruoff, “Detection of sulfur dioxide gas with graphene field effect transistor,” Appl. Phys. Lett. 100, 163114 (2012).
[Crossref]

Li, H.-J.

H.-J. Li, L.-L. Wang, B. Sun, Z.-R. Huang, and X. Zhai, “Tunable mid-infrared plasmonic band-pass filter based on a single graphene sheet with cavities,” J. Appl. Phys. 116, 224505 (2014).
[Crossref]

Li, J.

W. Yue, Z. Wang, Y. Yang, J. Han, J. Li, Z. Guo, H. Tan, and X.-X. Zhang, “High performance infrared plasmonic metamaterial absorbers and their applications to thin-film sensing,” Plasmonics 11, 1557–1563 (2016).
[Crossref]

Li, L.

V. Singh, P. T. Lin, N. Patel, H. Lin, L. Li, Y. Zou, F. Deng, C. Ni, J. Hu, and J. Giammarco, “Mid-infrared materials and devices on a Si platform for optical sensing,” Sci. Technol. Adv. Mater. 15, 014603 (2014).
[Crossref]

Li, M.

P. Sun, F. Xia, L. Liu, L. Jiao, K. Chen, M. Li, Q. Liu, and M. Yun, “Tunable graphene-based infrared perfect absorber for sensing,” in IEEE International Conference on Manipulation, Manufacturing and Measurement on the Nanoscale (3M-NANO) (IEEE, 2017), pp. 83–86.

Li, O.

G. Li, X. Chen, O. Li, C. Shao, Y. Jiang, L. Huang, B. Ni, W. Hu, and W. Lu, “A novel plasmonic resonance sensor based on an infrared perfect absorber,” J. Phys. D 45, 205102 (2012).
[Crossref]

Li, R.

R. Li, D. Wu, Y. Liu, L. Yu, Z. Yu, and H. Ye, “Infrared plasmonic refractive index sensor with ultra-high figure of merit based on the optimized all-metal grating,” Nanoscale Res. Lett. 12, 1 (2017).
[Crossref]

Li, X.

X. Li and S. Yu, “Extremely high sensitive plasmonic refractive index sensors based on metallic grating,” Plasmonics 5, 389–394 (2010).
[Crossref]

Lim, K.-Y.

D.-G. Park, T.-H. Cha, K.-Y. Lim, H.-J. Cho, T.-K. Kim, S.-A. Jang, Y.-S. Suh, V. Misra, I.-S. Yeo, and J.-S. Roh, “Robust ternary metal gate electrodes for dual gate CMOS devices,” in International Electron Devices Meeting. Technical Digest (Cat. No. 01CH37224) (IEEE, 2001), pp. 30.36.31–30.36.34.

Limaj, O.

O. Limaj, D. Etezadi, N. J. Wittenberg, D. Rodrigo, D. Yoo, S.-H. Oh, and H. Altug, “Infrared plasmonic biosensor for real-time and label-free monitoring of lipid membranes,” Nano Lett. 16, 1502–1508 (2016).
[Crossref]

Lin, H.

V. Singh, P. T. Lin, N. Patel, H. Lin, L. Li, Y. Zou, F. Deng, C. Ni, J. Hu, and J. Giammarco, “Mid-infrared materials and devices on a Si platform for optical sensing,” Sci. Technol. Adv. Mater. 15, 014603 (2014).
[Crossref]

Lin, P. T.

V. Singh, P. T. Lin, N. Patel, H. Lin, L. Li, Y. Zou, F. Deng, C. Ni, J. Hu, and J. Giammarco, “Mid-infrared materials and devices on a Si platform for optical sensing,” Sci. Technol. Adv. Mater. 15, 014603 (2014).
[Crossref]

Lipatov, A.

A. Lipatov, A. Varezhnikov, M. Augustin, M. Bruns, M. Sommer, V. Sysoev, A. Kolmakov, and A. Sinitskii, “Intrinsic device-to-device variation in graphene field-effect transistors on a Si/SiO2 substrate as a platform for discriminative gas sensing,” Appl. Phys. Lett. 104, 013114 (2014).
[Crossref]

Liu, J.

Z. Tao, H. Dong, Y. Duan, J. Liu, and B. Cao, “Tunable coupled terahertz surface plasmon polaritons in graphene metamaterials,” J. Opt. 21, 045107 (2019).
[Crossref]

Liu, K.

R. Yang, W. Xu, Z. Zhu, J. Zhang, K. Liu, C. Guo, and X. Yuan, “Tuneable infrared perfect absorber based on spatially separated double-layer graphene,” J. Opt. 21, 085002 (2019).
[Crossref]

Liu, L.

P. Sun, F. Xia, L. Liu, L. Jiao, K. Chen, M. Li, Q. Liu, and M. Yun, “Tunable graphene-based infrared perfect absorber for sensing,” in IEEE International Conference on Manipulation, Manufacturing and Measurement on the Nanoscale (3M-NANO) (IEEE, 2017), pp. 83–86.

Liu, N.

N. Liu, M. Mesch, T. Weiss, M. Hentschel, and H. Giessen, “Infrared perfect absorber and its application as plasmonic sensor,” Nano Lett. 10, 2342–2348 (2010).
[Crossref]

Liu, Q.

P. Sun, F. Xia, L. Liu, L. Jiao, K. Chen, M. Li, Q. Liu, and M. Yun, “Tunable graphene-based infrared perfect absorber for sensing,” in IEEE International Conference on Manipulation, Manufacturing and Measurement on the Nanoscale (3M-NANO) (IEEE, 2017), pp. 83–86.

Liu, X.

H. Lu, C. Zeng, Q. Zhang, X. Liu, M. M. Hossain, P. Reineck, and M. Gu, “Graphene-based active slow surface plasmon polaritons,” Sci. Rep. 5, 8443 (2015).
[Crossref]

Liu, Y.

R. Li, D. Wu, Y. Liu, L. Yu, Z. Yu, and H. Ye, “Infrared plasmonic refractive index sensor with ultra-high figure of merit based on the optimized all-metal grating,” Nanoscale Res. Lett. 12, 1 (2017).
[Crossref]

Y. Liu, Y. Q. Zhang, X. R. Jin, S. Zhang, and Y. P. Lee, “Dual-band infrared perfect absorber for plasmonic sensor based on the electromagnetically induced reflection-like effect,” Opt. Commun. 371, 173–177 (2016).
[Crossref]

Liu, Z.

Z. Fang, S. Thongrattanasiri, A. Schlather, Z. Liu, L. Ma, Y. Wang, P. M. Ajayan, P. Nordlander, N. J. Halas, and F. J. García de Abajo, “Gated tunability and hybridization of localized plasmons in nanostructured graphene,” ACS Nano 7, 2388–2395 (2013).
[Crossref]

Logothetidis, S.

P. Patsalas and S. Logothetidis, “Optical, electronic, and transport properties of nanocrystalline titanium nitride thin films,” J. Appl. Phys. 90, 4725–4734 (2001).
[Crossref]

Lu, H.

H. Lu, C. Zeng, Q. Zhang, X. Liu, M. M. Hossain, P. Reineck, and M. Gu, “Graphene-based active slow surface plasmon polaritons,” Sci. Rep. 5, 8443 (2015).
[Crossref]

Lu, W.

Z. Zhao, G. Li, F. Yu, H. Yang, X. Chen, and W. Lu, “Sub-wavelength grating enhanced ultra-narrow graphene perfect absorber,” Plasmonics 13, 2267–2272 (2018).
[Crossref]

G. Li, X. Chen, O. Li, C. Shao, Y. Jiang, L. Huang, B. Ni, W. Hu, and W. Lu, “A novel plasmonic resonance sensor based on an infrared perfect absorber,” J. Phys. D 45, 205102 (2012).
[Crossref]

G. Li, X. Wu, Y. Jiang, C. Shao, L. Huang, X. Chen, W. Hu, and W. Lu, “The improvement of figure of merit with infrared perfect absorber for plasmonic resonance sensing,” in 12th International Conference on Numerical Simulation of Optoelectronic Devices (NUSOD) (IEEE, 2012), pp. 3–4.

Lu, X.

Lu, Y.

Y. Zhao, X. Hu, G. Chen, X. Zhang, Z. Tan, J. Chen, R. S. Ruoff, Y. Zhu, and Y. Lu, “Infrared biosensors based on graphene plasmonics: modeling,” Phys. Chem. Chem. Phys. 15, 17118–17125 (2013).
[Crossref]

Ma, L.

Z. Fang, S. Thongrattanasiri, A. Schlather, Z. Liu, L. Ma, Y. Wang, P. M. Ajayan, P. Nordlander, N. J. Halas, and F. J. García de Abajo, “Gated tunability and hybridization of localized plasmons in nanostructured graphene,” ACS Nano 7, 2388–2395 (2013).
[Crossref]

Mahani, F. F.

A. H. Kazemi, F. F. Mahani, and A. Mokhtari, “Peak amplitude enhancement of photoconductive antenna using periodic nanoslit and graphene in the THz band,” Optik 185, 114–120 (2019).
[Crossref]

A. Mahanipour, F. F. Mahani, and A. Mokhtari, “Optimized design of nanohole array-based plasmonic color filters integrating genetic algorithm with FDTD solutions,” J. Artif. Intell. Data Mining 7, 279–286 (2019).
[Crossref]

M. Salemizadeh, F. F. Mahani, and A. Mokhtari, “Design of aluminum-based nanoring arrays for realizing efficient plasmonic sensors,” J. Opt. Soc. Am. B 36, 786–793 (2019).
[Crossref]

Z. Khezripour, F. F. Mahani, and A. Mokhtari, “Double-sided TiO2 nano-gratings for broadband performance enhancement of organic solar cells,” J. Opt. Soc. Am. B 35, 2478–2483 (2018).
[Crossref]

F. F. Mahani, A. Mokhtari, and M. Mehran, “Design and development of aluminum nanoring arrays for realization of dual-mode operation plasmonic color filters,” J. Opt. Soc. Am. B 35, 1764–1771 (2018).
[Crossref]

F. F. Mahani and A. Mokhtari, “Performance improvement of organic solar cells using a hybrid color filter electrode of graphene-aluminum nanorings,” J. Nanoelectron. Optoelectron. 13, 1917–1923 (2018).
[Crossref]

F. F. Mahani and A. Mokhtari, “Polarization-tuned chromatic electrodes using hybrid design of graphene-aluminum nanocross arrays for efficient organic solar cells,” Opt. Mater. 84, 158–165 (2018).
[Crossref]

F. F. Mahani and A. Mokhtari, “TiO2 circular nano-gratings as anti-reflective coatings and potential color filters for efficient organic solar cells,” J. Nanoelectron. Optoelectron. 13, 1624–1629 (2018).
[Crossref]

Z. Khezripour, F. F. Mahani, and A. Mokhtari, “Performance improvement of ultrathin organic solar cells utilizing light-trapping aluminum-titanium nitride nanosquare arrays,” Opt. Mater. 84, 651–657 (2018).
[Crossref]

F. F. Mahani, A. Mokhtari, and M. Mehran, “Dual mode operation, highly selective nanohole array-based plasmonic colour filters,” Nanotechnology 28, 385203 (2017).
[Crossref]

F. F. Mahani and A. Mokhtari, “Performance enhancement of nanohole array-based plasmonic color filters for CMOS image sensors,” in 23rd Iranian Conference on Optics and Photonics (ICOP 2017) and the 9th Iranian Conference on Photonics Engineering and Technology (ICPET 2017) (2017).

F. F. Mahani, A. Mahanipour, and A. Mokhtari, “Optimization of plasmonic color filters for CMOS image sensors by genetic algorithm,” in 2nd Conference on Swarm Intelligence and Evolutionary Computation (CSIEC) (2017), pp. 12–15.

F. F. Mahani and A. Mokhtari, “Enhancement of ITO-free organic solar cells utilizing plasmonic nanohole electrodes,” in 7th International Conference on Nanotechnology (ICN) (2017).

Z. Khezripour, F. F. Mahani, and A. Mokhtari, “Optimized design of silicon-based moth eye nanostructures for thin film solar cells,” in 3rd Conference on Swarm Intelligence and Evolutionary Computation (CSIEC) (2018).

M. Salemizadeh, F. F. Mahani, and A. Mokhtari, “Design and development of efficient plasmonic sensors based on bi-layer of silver-SiO2 nanodisk arrays,” in 27th Iranian Conference on Electrical Engineering (ICEE) (IEEE, 2019), pp. 311–314.

Mahanipour, A.

A. Mahanipour, F. F. Mahani, and A. Mokhtari, “Optimized design of nanohole array-based plasmonic color filters integrating genetic algorithm with FDTD solutions,” J. Artif. Intell. Data Mining 7, 279–286 (2019).
[Crossref]

F. F. Mahani, A. Mahanipour, and A. Mokhtari, “Optimization of plasmonic color filters for CMOS image sensors by genetic algorithm,” in 2nd Conference on Swarm Intelligence and Evolutionary Computation (CSIEC) (2017), pp. 12–15.

Maier, S.

A. Y. Nikitin, S. Maier, and L. Martin-Moreno, “Special issue on graphene nanophotonics,” J. Opt. 15, 110201 (2013).
[Crossref]

Manolis, A.

G. Dabos, A. Manolis, A. Giesecke, C. Porschatis, B. Chmielak, T. Wahlbrink, N. Pleros, and D. Tsiokos, “TM grating coupler on low-loss LPCVD based Si3N4 waveguide platform,” Opt. Commun. 405, 35–38 (2017).
[Crossref]

Martin-Moreno, L.

A. Y. Nikitin, S. Maier, and L. Martin-Moreno, “Special issue on graphene nanophotonics,” J. Opt. 15, 110201 (2013).
[Crossref]

McLeod, A.

Z. Fei, A. Rodin, G. Andreev, W. Bao, A. McLeod, M. Wagner, L. Zhang, Z. Zhao, M. Thiemens, and G. Dominguez, “Gate-tuning of graphene plasmons revealed by infrared nano-imaging,” Nature 487, 82–85 (2012).
[Crossref]

Mehran, M.

F. F. Mahani, A. Mokhtari, and M. Mehran, “Design and development of aluminum nanoring arrays for realization of dual-mode operation plasmonic color filters,” J. Opt. Soc. Am. B 35, 1764–1771 (2018).
[Crossref]

F. F. Mahani, A. Mokhtari, and M. Mehran, “Dual mode operation, highly selective nanohole array-based plasmonic colour filters,” Nanotechnology 28, 385203 (2017).
[Crossref]

Meng, X.-M.

S. Zeng, S. Hu, J. Xia, T. Anderson, X.-Q. Dinh, X.-M. Meng, P. Coquet, and K.-T. Yong, “Graphene-MoS2 hybrid nanostructures enhanced surface plasmon resonance biosensors,” Sens. Actuators B Chem. 207, 801–810 (2015).
[Crossref]

Mengali, S.

A. De Marcellis, E. Palange, M. Janneh, C. Rizza, A. Ciattoni, and S. Mengali, “Design optimisation of plasmonic metasurfaces for mid-infrared high-sensitivity chemical sensing,” Plasmonics 12, 293–298 (2017).
[Crossref]

Mesch, M.

N. Liu, M. Mesch, T. Weiss, M. Hentschel, and H. Giessen, “Infrared perfect absorber and its application as plasmonic sensor,” Nano Lett. 10, 2342–2348 (2010).
[Crossref]

Michel, K.

E. Baudet, A. Gutierrez-Arroyo, M. Baillieul, J. Charrier, P. Němec, L. Bodiou, J. Lemaitre, E. Rinnert, K. Michel, and B. Bureau, “Development of an evanescent optical integrated sensor in the mid-infrared for detection of pollution in groundwater or seawater,” Adv. Device Mater. 3, 23–29 (2017).
[Crossref]

Mir, A.

A. Farmani and A. Mir, “Graphene sensor based on surface plasmon resonance for optical scanning,” IEEE Photon. Technol. Lett. 31, 643–646 (2019).
[Crossref]

A. Alipour, A. Farmani, and A. Mir, “High sensitivity and tunable nanoscale sensor based on plasmon-induced transparency in plasmonic metasurface,” IEEE Sens. J. 18, 7047–7054 (2018).
[Crossref]

Miroshnichenko, A.

A. Rifat, M. Rahmani, L. Xu, and A. Miroshnichenko, “Hybrid metasurface based tunable near-perfect absorber and plasmonic sensor,” Materials 11, 1091 (2018).
[Crossref]

Misra, V.

D.-G. Park, T.-H. Cha, K.-Y. Lim, H.-J. Cho, T.-K. Kim, S.-A. Jang, Y.-S. Suh, V. Misra, I.-S. Yeo, and J.-S. Roh, “Robust ternary metal gate electrodes for dual gate CMOS devices,” in International Electron Devices Meeting. Technical Digest (Cat. No. 01CH37224) (IEEE, 2001), pp. 30.36.31–30.36.34.

Mizaikoff, B.

S.-S. Kim, C. Young, and B. Mizaikoff, “Miniaturized mid-infrared sensor technologies,” Anal. Bioanal. Chem. 390, 231–237 (2008).
[Crossref]

M. Karlowatz, M. Kraft, and B. Mizaikoff, “Simultaneous quantitative determination of benzene, toluene, and xylenes in water using mid-infrared evanescent field spectroscopy,” Anal. Chem. 76, 2643–2648 (2004).
[Crossref]

Mokhtari, A.

A. H. Kazemi, F. F. Mahani, and A. Mokhtari, “Peak amplitude enhancement of photoconductive antenna using periodic nanoslit and graphene in the THz band,” Optik 185, 114–120 (2019).
[Crossref]

A. Mahanipour, F. F. Mahani, and A. Mokhtari, “Optimized design of nanohole array-based plasmonic color filters integrating genetic algorithm with FDTD solutions,” J. Artif. Intell. Data Mining 7, 279–286 (2019).
[Crossref]

M. Salemizadeh, F. F. Mahani, and A. Mokhtari, “Design of aluminum-based nanoring arrays for realizing efficient plasmonic sensors,” J. Opt. Soc. Am. B 36, 786–793 (2019).
[Crossref]

Z. Khezripour, F. F. Mahani, and A. Mokhtari, “Double-sided TiO2 nano-gratings for broadband performance enhancement of organic solar cells,” J. Opt. Soc. Am. B 35, 2478–2483 (2018).
[Crossref]

F. F. Mahani, A. Mokhtari, and M. Mehran, “Design and development of aluminum nanoring arrays for realization of dual-mode operation plasmonic color filters,” J. Opt. Soc. Am. B 35, 1764–1771 (2018).
[Crossref]

F. F. Mahani and A. Mokhtari, “TiO2 circular nano-gratings as anti-reflective coatings and potential color filters for efficient organic solar cells,” J. Nanoelectron. Optoelectron. 13, 1624–1629 (2018).
[Crossref]

F. F. Mahani and A. Mokhtari, “Polarization-tuned chromatic electrodes using hybrid design of graphene-aluminum nanocross arrays for efficient organic solar cells,” Opt. Mater. 84, 158–165 (2018).
[Crossref]

F. F. Mahani and A. Mokhtari, “Performance improvement of organic solar cells using a hybrid color filter electrode of graphene-aluminum nanorings,” J. Nanoelectron. Optoelectron. 13, 1917–1923 (2018).
[Crossref]

Z. Khezripour, F. F. Mahani, and A. Mokhtari, “Performance improvement of ultrathin organic solar cells utilizing light-trapping aluminum-titanium nitride nanosquare arrays,” Opt. Mater. 84, 651–657 (2018).
[Crossref]

F. F. Mahani, A. Mokhtari, and M. Mehran, “Dual mode operation, highly selective nanohole array-based plasmonic colour filters,” Nanotechnology 28, 385203 (2017).
[Crossref]

F. F. Mahani and A. Mokhtari, “Performance enhancement of nanohole array-based plasmonic color filters for CMOS image sensors,” in 23rd Iranian Conference on Optics and Photonics (ICOP 2017) and the 9th Iranian Conference on Photonics Engineering and Technology (ICPET 2017) (2017).

F. F. Mahani, A. Mahanipour, and A. Mokhtari, “Optimization of plasmonic color filters for CMOS image sensors by genetic algorithm,” in 2nd Conference on Swarm Intelligence and Evolutionary Computation (CSIEC) (2017), pp. 12–15.

F. F. Mahani and A. Mokhtari, “Enhancement of ITO-free organic solar cells utilizing plasmonic nanohole electrodes,” in 7th International Conference on Nanotechnology (ICN) (2017).

Z. Khezripour, F. F. Mahani, and A. Mokhtari, “Optimized design of silicon-based moth eye nanostructures for thin film solar cells,” in 3rd Conference on Swarm Intelligence and Evolutionary Computation (CSIEC) (2018).

M. Salemizadeh, F. F. Mahani, and A. Mokhtari, “Design and development of efficient plasmonic sensors based on bi-layer of silver-SiO2 nanodisk arrays,” in 27th Iranian Conference on Electrical Engineering (ICEE) (IEEE, 2019), pp. 311–314.

Moulik, A.

C. J. Koester and A. Moulik, “Trends in environmental analysis,” Anal. Chem. 77, 3737–3754 (2005).
[Crossref]

Myers, M.

B. Pejcic, M. Myers, and A. Ross, “Mid-infrared sensing of organic pollutants in aqueous environments,” Sensors 9, 6232–6253 (2009).
[Crossref]

Naik, G. V.

Nemec, P.

E. Baudet, A. Gutierrez-Arroyo, M. Baillieul, J. Charrier, P. Němec, L. Bodiou, J. Lemaitre, E. Rinnert, K. Michel, and B. Bureau, “Development of an evanescent optical integrated sensor in the mid-infrared for detection of pollution in groundwater or seawater,” Adv. Device Mater. 3, 23–29 (2017).
[Crossref]

Ni, B.

G. Li, X. Chen, O. Li, C. Shao, Y. Jiang, L. Huang, B. Ni, W. Hu, and W. Lu, “A novel plasmonic resonance sensor based on an infrared perfect absorber,” J. Phys. D 45, 205102 (2012).
[Crossref]

Ni, C.

V. Singh, P. T. Lin, N. Patel, H. Lin, L. Li, Y. Zou, F. Deng, C. Ni, J. Hu, and J. Giammarco, “Mid-infrared materials and devices on a Si platform for optical sensing,” Sci. Technol. Adv. Mater. 15, 014603 (2014).
[Crossref]

Ni, X.

Nikitin, A. Y.

A. Y. Nikitin, S. Maier, and L. Martin-Moreno, “Special issue on graphene nanophotonics,” J. Opt. 15, 110201 (2013).
[Crossref]

Nilsson, C. E.

C. E. Nilsson, S. Abbas, M. Bennemo, A. Larsson, M. Hämäläinen, and Å. Frostell-Karlsson, “A novel assay for influenza virus quantification using surface plasmon resonance,” Vaccine 28, 759–766 (2010).
[Crossref]

Nordlander, P.

Z. Fang, S. Thongrattanasiri, A. Schlather, Z. Liu, L. Ma, Y. Wang, P. M. Ajayan, P. Nordlander, N. J. Halas, and F. J. García de Abajo, “Gated tunability and hybridization of localized plasmons in nanostructured graphene,” ACS Nano 7, 2388–2395 (2013).
[Crossref]

Nozhat, N.

F. Baranzadeh and N. Nozhat, “Tunable metasurface refractive index plasmonic nano-sensor utilizing an ITO thin layer in the near-infrared region,” Appl. Opt. 58, 2616–2623 (2019).
[Crossref]

R. Rashiditabar, N. Nozhat, and M. S. Zare, “Tunable plasmonic absorber based on TiN-nanosphere liquid crystal hybrid in visible and near-infrared regions,” Plasmonics 13, 1853–1859 (2018).
[Crossref]

Obayya, S.

A. E. Khalil, A. H. El-Saeed, M. A. Ibrahim, M. E. Hashish, M. R. Abdelmonem, M. F. O. Hameed, M. Y. Azab, and S. Obayya, “Highly sensitive photonic crystal fiber biosensor based on titanium nitride,” Opt. Quantum Electron. 50, 158 (2018).
[Crossref]

Oh, S.-H.

O. Limaj, D. Etezadi, N. J. Wittenberg, D. Rodrigo, D. Yoo, S.-H. Oh, and H. Altug, “Infrared plasmonic biosensor for real-time and label-free monitoring of lipid membranes,” Nano Lett. 16, 1502–1508 (2016).
[Crossref]

Palange, E.

A. De Marcellis, E. Palange, M. Janneh, C. Rizza, A. Ciattoni, and S. Mengali, “Design optimisation of plasmonic metasurfaces for mid-infrared high-sensitivity chemical sensing,” Plasmonics 12, 293–298 (2017).
[Crossref]

Palik, E. D.

E. D. Palik, Handbook of Optical Constants of Solids (Academic, 1998), Vol. 3.

Park, D.-G.

D.-G. Park, T.-H. Cha, K.-Y. Lim, H.-J. Cho, T.-K. Kim, S.-A. Jang, Y.-S. Suh, V. Misra, I.-S. Yeo, and J.-S. Roh, “Robust ternary metal gate electrodes for dual gate CMOS devices,” in International Electron Devices Meeting. Technical Digest (Cat. No. 01CH37224) (IEEE, 2001), pp. 30.36.31–30.36.34.

Park, H. J.

H. J. Park, T. Xu, J. Y. Lee, A. Ledbetter, and L. J. Guo, “Photonic color filters integrated with organic solar cells for energy harvesting,” ACS Nano 5, 7055–7060 (2011).
[Crossref]

Patel, N.

V. Singh, P. T. Lin, N. Patel, H. Lin, L. Li, Y. Zou, F. Deng, C. Ni, J. Hu, and J. Giammarco, “Mid-infrared materials and devices on a Si platform for optical sensing,” Sci. Technol. Adv. Mater. 15, 014603 (2014).
[Crossref]

Patsalas, P.

P. Patsalas and S. Logothetidis, “Optical, electronic, and transport properties of nanocrystalline titanium nitride thin films,” J. Appl. Phys. 90, 4725–4734 (2001).
[Crossref]

Pejcic, B.

B. Pejcic, M. Myers, and A. Ross, “Mid-infrared sensing of organic pollutants in aqueous environments,” Sensors 9, 6232–6253 (2009).
[Crossref]

B. Pejcic, P. Eadington, and A. Ross, “Environmental monitoring of hydrocarbons: a chemical sensor perspective,” Environ. Sci. Technol. 41, 6333–6342 (2007).
[Crossref]

Piner, R. D.

Y. Ren, C. Zhu, W. Cai, H. Li, H. Ji, I. Kholmanov, Y. Wu, R. D. Piner, and R. S. Ruoff, “Detection of sulfur dioxide gas with graphene field effect transistor,” Appl. Phys. Lett. 100, 163114 (2012).
[Crossref]

Pleros, N.

G. Dabos, A. Manolis, A. Giesecke, C. Porschatis, B. Chmielak, T. Wahlbrink, N. Pleros, and D. Tsiokos, “TM grating coupler on low-loss LPCVD based Si3N4 waveguide platform,” Opt. Commun. 405, 35–38 (2017).
[Crossref]

Polyutov, S.

N. Venugopal, V. Gerasimov, A. Ershov, S. Karpov, and S. Polyutov, “Titanium nitride as light trapping plasmonic material in silicon solar cell,” Opt. Mater. 72, 397–402 (2017).
[Crossref]

Porschatis, C.

G. Dabos, A. Manolis, A. Giesecke, C. Porschatis, B. Chmielak, T. Wahlbrink, N. Pleros, and D. Tsiokos, “TM grating coupler on low-loss LPCVD based Si3N4 waveguide platform,” Opt. Commun. 405, 35–38 (2017).
[Crossref]

Qin, S.

F. Xiong, J. Zhou, W. Xu, Z. Zhu, X. Yuan, J. Zhang, and S. Qin, “Visible to near-infrared coherent perfect absorption in monolayer graphene,” J. Opt. 20, 095401 (2018).
[Crossref]

Rahmani, M.

A. Rifat, M. Rahmani, L. Xu, and A. Miroshnichenko, “Hybrid metasurface based tunable near-perfect absorber and plasmonic sensor,” Materials 11, 1091 (2018).
[Crossref]

Rashiditabar, R.

R. Rashiditabar, N. Nozhat, and M. S. Zare, “Tunable plasmonic absorber based on TiN-nanosphere liquid crystal hybrid in visible and near-infrared regions,” Plasmonics 13, 1853–1859 (2018).
[Crossref]

Reineck, P.

H. Lu, C. Zeng, Q. Zhang, X. Liu, M. M. Hossain, P. Reineck, and M. Gu, “Graphene-based active slow surface plasmon polaritons,” Sci. Rep. 5, 8443 (2015).
[Crossref]

Ren, Y.

Y. Ren, C. Zhu, W. Cai, H. Li, H. Ji, I. Kholmanov, Y. Wu, R. D. Piner, and R. S. Ruoff, “Detection of sulfur dioxide gas with graphene field effect transistor,” Appl. Phys. Lett. 100, 163114 (2012).
[Crossref]

Repän, T.

Rifat, A.

A. Rifat, M. Rahmani, L. Xu, and A. Miroshnichenko, “Hybrid metasurface based tunable near-perfect absorber and plasmonic sensor,” Materials 11, 1091 (2018).
[Crossref]

Rinnert, E.

E. Baudet, A. Gutierrez-Arroyo, M. Baillieul, J. Charrier, P. Němec, L. Bodiou, J. Lemaitre, E. Rinnert, K. Michel, and B. Bureau, “Development of an evanescent optical integrated sensor in the mid-infrared for detection of pollution in groundwater or seawater,” Adv. Device Mater. 3, 23–29 (2017).
[Crossref]

Rizza, C.

A. De Marcellis, E. Palange, M. Janneh, C. Rizza, A. Ciattoni, and S. Mengali, “Design optimisation of plasmonic metasurfaces for mid-infrared high-sensitivity chemical sensing,” Plasmonics 12, 293–298 (2017).
[Crossref]

Rodin, A.

Z. Fei, A. Rodin, G. Andreev, W. Bao, A. McLeod, M. Wagner, L. Zhang, Z. Zhao, M. Thiemens, and G. Dominguez, “Gate-tuning of graphene plasmons revealed by infrared nano-imaging,” Nature 487, 82–85 (2012).
[Crossref]

Rodrigo, D.

O. Limaj, D. Etezadi, N. J. Wittenberg, D. Rodrigo, D. Yoo, S.-H. Oh, and H. Altug, “Infrared plasmonic biosensor for real-time and label-free monitoring of lipid membranes,” Nano Lett. 16, 1502–1508 (2016).
[Crossref]

Roh, J.-S.

D.-G. Park, T.-H. Cha, K.-Y. Lim, H.-J. Cho, T.-K. Kim, S.-A. Jang, Y.-S. Suh, V. Misra, I.-S. Yeo, and J.-S. Roh, “Robust ternary metal gate electrodes for dual gate CMOS devices,” in International Electron Devices Meeting. Technical Digest (Cat. No. 01CH37224) (IEEE, 2001), pp. 30.36.31–30.36.34.

Ross, A.

B. Pejcic, M. Myers, and A. Ross, “Mid-infrared sensing of organic pollutants in aqueous environments,” Sensors 9, 6232–6253 (2009).
[Crossref]

B. Pejcic, P. Eadington, and A. Ross, “Environmental monitoring of hydrocarbons: a chemical sensor perspective,” Environ. Sci. Technol. 41, 6333–6342 (2007).
[Crossref]

Rowe, D. J.

D. J. Rowe, D. Smith, and J. S. Wilkinson, “Complex refractive index spectra of whole blood and aqueous solutions of anticoagulants, analgesics and buffers in the mid-infrared,” Sci. Rep. 7, 7356 (2017).
[Crossref]

Ruoff, R. S.

Y. Zhao, X. Hu, G. Chen, X. Zhang, Z. Tan, J. Chen, R. S. Ruoff, Y. Zhu, and Y. Lu, “Infrared biosensors based on graphene plasmonics: modeling,” Phys. Chem. Chem. Phys. 15, 17118–17125 (2013).
[Crossref]

Y. Ren, C. Zhu, W. Cai, H. Li, H. Ji, I. Kholmanov, Y. Wu, R. D. Piner, and R. S. Ruoff, “Detection of sulfur dioxide gas with graphene field effect transistor,” Appl. Phys. Lett. 100, 163114 (2012).
[Crossref]

Salemizadeh, M.

M. Salemizadeh, F. F. Mahani, and A. Mokhtari, “Design of aluminum-based nanoring arrays for realizing efficient plasmonic sensors,” J. Opt. Soc. Am. B 36, 786–793 (2019).
[Crossref]

M. Salemizadeh, F. F. Mahani, and A. Mokhtari, “Design and development of efficient plasmonic sensors based on bi-layer of silver-SiO2 nanodisk arrays,” in 27th Iranian Conference on Electrical Engineering (ICEE) (IEEE, 2019), pp. 311–314.

Sands, T. D.

Schlather, A.

Z. Fang, S. Thongrattanasiri, A. Schlather, Z. Liu, L. Ma, Y. Wang, P. M. Ajayan, P. Nordlander, N. J. Halas, and F. J. García de Abajo, “Gated tunability and hybridization of localized plasmons in nanostructured graphene,” ACS Nano 7, 2388–2395 (2013).
[Crossref]

Schroeder, J. L.

Shahzadi, A.

M. Danaie and A. Shahzadi, “Design of a high-resolution metal-insulator–metal plasmonic refractive index sensor based on a ring-shaped Si resonator,” Plasmonics, 1–13 (2019).
[Crossref]

Shao, C.

G. Li, X. Chen, O. Li, C. Shao, Y. Jiang, L. Huang, B. Ni, W. Hu, and W. Lu, “A novel plasmonic resonance sensor based on an infrared perfect absorber,” J. Phys. D 45, 205102 (2012).
[Crossref]

G. Li, X. Wu, Y. Jiang, C. Shao, L. Huang, X. Chen, W. Hu, and W. Lu, “The improvement of figure of merit with infrared perfect absorber for plasmonic resonance sensing,” in 12th International Conference on Numerical Simulation of Optoelectronic Devices (NUSOD) (IEEE, 2012), pp. 3–4.

Shi, Y.

X. Wang and Y. Shi, “Fabrication techniques of graphene nanostructures,” in Renewable Energy (2014), pp. 1–30.

Shkondin, E.

Shrestha, V. R.

V. R. Shrestha, S.-S. Lee, E.-S. Kim, and D.-Y. Choi, “Aluminum plasmonics based highly transmissive polarization-independent subtractive color filters exploiting a nanopatch array,” Nano Lett. 14, 6672–6678 (2014).
[Crossref]

Singh, V.

V. Singh, P. T. Lin, N. Patel, H. Lin, L. Li, Y. Zou, F. Deng, C. Ni, J. Hu, and J. Giammarco, “Mid-infrared materials and devices on a Si platform for optical sensing,” Sci. Technol. Adv. Mater. 15, 014603 (2014).
[Crossref]

Sinitskii, A.

A. Lipatov, A. Varezhnikov, M. Augustin, M. Bruns, M. Sommer, V. Sysoev, A. Kolmakov, and A. Sinitskii, “Intrinsic device-to-device variation in graphene field-effect transistors on a Si/SiO2 substrate as a platform for discriminative gas sensing,” Appl. Phys. Lett. 104, 013114 (2014).
[Crossref]

Smith, D.

D. J. Rowe, D. Smith, and J. S. Wilkinson, “Complex refractive index spectra of whole blood and aqueous solutions of anticoagulants, analgesics and buffers in the mid-infrared,” Sci. Rep. 7, 7356 (2017).
[Crossref]

Sommer, M.

A. Lipatov, A. Varezhnikov, M. Augustin, M. Bruns, M. Sommer, V. Sysoev, A. Kolmakov, and A. Sinitskii, “Intrinsic device-to-device variation in graphene field-effect transistors on a Si/SiO2 substrate as a platform for discriminative gas sensing,” Appl. Phys. Lett. 104, 013114 (2014).
[Crossref]

Song, S.

Suh, Y.-S.

D.-G. Park, T.-H. Cha, K.-Y. Lim, H.-J. Cho, T.-K. Kim, S.-A. Jang, Y.-S. Suh, V. Misra, I.-S. Yeo, and J.-S. Roh, “Robust ternary metal gate electrodes for dual gate CMOS devices,” in International Electron Devices Meeting. Technical Digest (Cat. No. 01CH37224) (IEEE, 2001), pp. 30.36.31–30.36.34.

Sun, B.

H.-J. Li, L.-L. Wang, B. Sun, Z.-R. Huang, and X. Zhai, “Tunable mid-infrared plasmonic band-pass filter based on a single graphene sheet with cavities,” J. Appl. Phys. 116, 224505 (2014).
[Crossref]

Sun, C.

C. Sun, “On the plasmonic properties of Ag@ SiO2@ graphene core-shell nanostructures,” Plasmonics 13, 1671–1680 (2018).
[Crossref]

Sun, P.

P. Sun, F. Xia, L. Liu, L. Jiao, K. Chen, M. Li, Q. Liu, and M. Yun, “Tunable graphene-based infrared perfect absorber for sensing,” in IEEE International Conference on Manipulation, Manufacturing and Measurement on the Nanoscale (3M-NANO) (IEEE, 2017), pp. 83–86.

Sun, Z.

F. Bonaccorso, Z. Sun, T. Hasan, and A. Ferrari, “Graphene photonics and optoelectronics,” Nat. Photonics 4, 611–622 (2010).
[Crossref]

Sysoev, V.

A. Lipatov, A. Varezhnikov, M. Augustin, M. Bruns, M. Sommer, V. Sysoev, A. Kolmakov, and A. Sinitskii, “Intrinsic device-to-device variation in graphene field-effect transistors on a Si/SiO2 substrate as a platform for discriminative gas sensing,” Appl. Phys. Lett. 104, 013114 (2014).
[Crossref]

Takayama, O.

Tan, H.

W. Yue, Z. Wang, Y. Yang, J. Han, J. Li, Z. Guo, H. Tan, and X.-X. Zhang, “High performance infrared plasmonic metamaterial absorbers and their applications to thin-film sensing,” Plasmonics 11, 1557–1563 (2016).
[Crossref]

Tan, Z.

Y. Zhao, X. Hu, G. Chen, X. Zhang, Z. Tan, J. Chen, R. S. Ruoff, Y. Zhu, and Y. Lu, “Infrared biosensors based on graphene plasmonics: modeling,” Phys. Chem. Chem. Phys. 15, 17118–17125 (2013).
[Crossref]

Tao, Z.

Z. Tao, H. Dong, Y. Duan, J. Liu, and B. Cao, “Tunable coupled terahertz surface plasmon polaritons in graphene metamaterials,” J. Opt. 21, 045107 (2019).
[Crossref]

Teng, J.

B. Wang, X. Zhang, X. Yuan, and J. Teng, “Optical coupling of surface plasmons between graphene sheets,” Appl. Phys. Lett. 100, 131111 (2012).
[Crossref]

Thiemens, M.

Z. Fei, A. Rodin, G. Andreev, W. Bao, A. McLeod, M. Wagner, L. Zhang, Z. Zhao, M. Thiemens, and G. Dominguez, “Gate-tuning of graphene plasmons revealed by infrared nano-imaging,” Nature 487, 82–85 (2012).
[Crossref]

Thongrattanasiri, S.

Z. Fang, S. Thongrattanasiri, A. Schlather, Z. Liu, L. Ma, Y. Wang, P. M. Ajayan, P. Nordlander, N. J. Halas, and F. J. García de Abajo, “Gated tunability and hybridization of localized plasmons in nanostructured graphene,” ACS Nano 7, 2388–2395 (2013).
[Crossref]

Tsiokos, D.

G. Dabos, A. Manolis, A. Giesecke, C. Porschatis, B. Chmielak, T. Wahlbrink, N. Pleros, and D. Tsiokos, “TM grating coupler on low-loss LPCVD based Si3N4 waveguide platform,” Opt. Commun. 405, 35–38 (2017).
[Crossref]

Vafapour, Z.

Varezhnikov, A.

A. Lipatov, A. Varezhnikov, M. Augustin, M. Bruns, M. Sommer, V. Sysoev, A. Kolmakov, and A. Sinitskii, “Intrinsic device-to-device variation in graphene field-effect transistors on a Si/SiO2 substrate as a platform for discriminative gas sensing,” Appl. Phys. Lett. 104, 013114 (2014).
[Crossref]

Venugopal, N.

N. Venugopal, V. Gerasimov, A. Ershov, S. Karpov, and S. Polyutov, “Titanium nitride as light trapping plasmonic material in silicon solar cell,” Opt. Mater. 72, 397–402 (2017).
[Crossref]

Wagner, M.

Z. Fei, A. Rodin, G. Andreev, W. Bao, A. McLeod, M. Wagner, L. Zhang, Z. Zhao, M. Thiemens, and G. Dominguez, “Gate-tuning of graphene plasmons revealed by infrared nano-imaging,” Nature 487, 82–85 (2012).
[Crossref]

Wahlbrink, T.

G. Dabos, A. Manolis, A. Giesecke, C. Porschatis, B. Chmielak, T. Wahlbrink, N. Pleros, and D. Tsiokos, “TM grating coupler on low-loss LPCVD based Si3N4 waveguide platform,” Opt. Commun. 405, 35–38 (2017).
[Crossref]

Walls, K.

K. Walls, Q. Chen, S. Collins, D. R. Cumming, and T. D. Drysdale, “Automated design, fabrication, and characterization of color matching plasmonic filters,” IEEE Photon. Technol. Lett. 24, 602–604 (2012).
[Crossref]

Wang, B.

B. Wang, X. Zhang, X. Yuan, and J. Teng, “Optical coupling of surface plasmons between graphene sheets,” Appl. Phys. Lett. 100, 131111 (2012).
[Crossref]

Wang, H.

Wang, L.

H. Li, L. Wang, and X. Zhai, “Tunable graphene-based mid-infrared plasmonic wide-angle narrowband perfect absorber,” Sci. Rep. 6, 36651 (2016).
[Crossref]

Wang, L.-L.

H.-J. Li, L.-L. Wang, B. Sun, Z.-R. Huang, and X. Zhai, “Tunable mid-infrared plasmonic band-pass filter based on a single graphene sheet with cavities,” J. Appl. Phys. 116, 224505 (2014).
[Crossref]

Wang, T.

X. Yan, T. Wang, X. Han, S. Xiao, Y. Zhu, and Y. Wang, “High sensitivity nanoplasmonic sensor based on plasmon-induced transparency in a graphene nanoribbon waveguide coupled with detuned graphene square-nanoring resonators,” Plasmonics 12, 1449–1455 (2017).
[Crossref]

Wang, X.

X. Wang and Y. Shi, “Fabrication techniques of graphene nanostructures,” in Renewable Energy (2014), pp. 1–30.

Wang, Y.

X. Yan, T. Wang, X. Han, S. Xiao, Y. Zhu, and Y. Wang, “High sensitivity nanoplasmonic sensor based on plasmon-induced transparency in a graphene nanoribbon waveguide coupled with detuned graphene square-nanoring resonators,” Plasmonics 12, 1449–1455 (2017).
[Crossref]

Z. Fang, S. Thongrattanasiri, A. Schlather, Z. Liu, L. Ma, Y. Wang, P. M. Ajayan, P. Nordlander, N. J. Halas, and F. J. García de Abajo, “Gated tunability and hybridization of localized plasmons in nanostructured graphene,” ACS Nano 7, 2388–2395 (2013).
[Crossref]

Wang, Z.

W. Yue, Z. Wang, Y. Yang, J. Han, J. Li, Z. Guo, H. Tan, and X.-X. Zhang, “High performance infrared plasmonic metamaterial absorbers and their applications to thin-film sensing,” Plasmonics 11, 1557–1563 (2016).
[Crossref]

Weiss, T.

N. Liu, M. Mesch, T. Weiss, M. Hentschel, and H. Giessen, “Infrared perfect absorber and its application as plasmonic sensor,” Nano Lett. 10, 2342–2348 (2010).
[Crossref]

Wen, L.

Wilkinson, J. S.

D. J. Rowe, D. Smith, and J. S. Wilkinson, “Complex refractive index spectra of whole blood and aqueous solutions of anticoagulants, analgesics and buffers in the mid-infrared,” Sci. Rep. 7, 7356 (2017).
[Crossref]

Wittenberg, N. J.

O. Limaj, D. Etezadi, N. J. Wittenberg, D. Rodrigo, D. Yoo, S.-H. Oh, and H. Altug, “Infrared plasmonic biosensor for real-time and label-free monitoring of lipid membranes,” Nano Lett. 16, 1502–1508 (2016).
[Crossref]

Wu, D.

R. Li, D. Wu, Y. Liu, L. Yu, Z. Yu, and H. Ye, “Infrared plasmonic refractive index sensor with ultra-high figure of merit based on the optimized all-metal grating,” Nanoscale Res. Lett. 12, 1 (2017).
[Crossref]

Wu, L.

Wu, X.

G. Li, X. Wu, Y. Jiang, C. Shao, L. Huang, X. Chen, W. Hu, and W. Lu, “The improvement of figure of merit with infrared perfect absorber for plasmonic resonance sensing,” in 12th International Conference on Numerical Simulation of Optoelectronic Devices (NUSOD) (IEEE, 2012), pp. 3–4.

Wu, Y.

Y. Ren, C. Zhu, W. Cai, H. Li, H. Ji, I. Kholmanov, Y. Wu, R. D. Piner, and R. S. Ruoff, “Detection of sulfur dioxide gas with graphene field effect transistor,” Appl. Phys. Lett. 100, 163114 (2012).
[Crossref]

Xia, F.

P. Sun, F. Xia, L. Liu, L. Jiao, K. Chen, M. Li, Q. Liu, and M. Yun, “Tunable graphene-based infrared perfect absorber for sensing,” in IEEE International Conference on Manipulation, Manufacturing and Measurement on the Nanoscale (3M-NANO) (IEEE, 2017), pp. 83–86.

Xia, J.

S. Zeng, S. Hu, J. Xia, T. Anderson, X.-Q. Dinh, X.-M. Meng, P. Coquet, and K.-T. Yong, “Graphene-MoS2 hybrid nanostructures enhanced surface plasmon resonance biosensors,” Sens. Actuators B Chem. 207, 801–810 (2015).
[Crossref]

Xiao, S.

X. Yan, T. Wang, X. Han, S. Xiao, Y. Zhu, and Y. Wang, “High sensitivity nanoplasmonic sensor based on plasmon-induced transparency in a graphene nanoribbon waveguide coupled with detuned graphene square-nanoring resonators,” Plasmonics 12, 1449–1455 (2017).
[Crossref]

Xiong, F.

F. Xiong, J. Zhou, W. Xu, Z. Zhu, X. Yuan, J. Zhang, and S. Qin, “Visible to near-infrared coherent perfect absorption in monolayer graphene,” J. Opt. 20, 095401 (2018).
[Crossref]

Xu, G.

Xu, L.

A. Rifat, M. Rahmani, L. Xu, and A. Miroshnichenko, “Hybrid metasurface based tunable near-perfect absorber and plasmonic sensor,” Materials 11, 1091 (2018).
[Crossref]

Xu, T.

H. J. Park, T. Xu, J. Y. Lee, A. Ledbetter, and L. J. Guo, “Photonic color filters integrated with organic solar cells for energy harvesting,” ACS Nano 5, 7055–7060 (2011).
[Crossref]

Xu, W.

R. Yang, W. Xu, Z. Zhu, J. Zhang, K. Liu, C. Guo, and X. Yuan, “Tuneable infrared perfect absorber based on spatially separated double-layer graphene,” J. Opt. 21, 085002 (2019).
[Crossref]

F. Xiong, J. Zhou, W. Xu, Z. Zhu, X. Yuan, J. Zhang, and S. Qin, “Visible to near-infrared coherent perfect absorption in monolayer graphene,” J. Opt. 20, 095401 (2018).
[Crossref]

Yan, X.

X. Yan, T. Wang, X. Han, S. Xiao, Y. Zhu, and Y. Wang, “High sensitivity nanoplasmonic sensor based on plasmon-induced transparency in a graphene nanoribbon waveguide coupled with detuned graphene square-nanoring resonators,” Plasmonics 12, 1449–1455 (2017).
[Crossref]

Yang, H.

Z. Zhao, G. Li, F. Yu, H. Yang, X. Chen, and W. Lu, “Sub-wavelength grating enhanced ultra-narrow graphene perfect absorber,” Plasmonics 13, 2267–2272 (2018).
[Crossref]

Yang, R.

R. Yang, W. Xu, Z. Zhu, J. Zhang, K. Liu, C. Guo, and X. Yuan, “Tuneable infrared perfect absorber based on spatially separated double-layer graphene,” J. Opt. 21, 085002 (2019).
[Crossref]

Yang, Y.

W. Yue, Z. Wang, Y. Yang, J. Han, J. Li, Z. Guo, H. Tan, and X.-X. Zhang, “High performance infrared plasmonic metamaterial absorbers and their applications to thin-film sensing,” Plasmonics 11, 1557–1563 (2016).
[Crossref]

Ye, H.

R. Li, D. Wu, Y. Liu, L. Yu, Z. Yu, and H. Ye, “Infrared plasmonic refractive index sensor with ultra-high figure of merit based on the optimized all-metal grating,” Nanoscale Res. Lett. 12, 1 (2017).
[Crossref]

Yeo, I.-S.

D.-G. Park, T.-H. Cha, K.-Y. Lim, H.-J. Cho, T.-K. Kim, S.-A. Jang, Y.-S. Suh, V. Misra, I.-S. Yeo, and J.-S. Roh, “Robust ternary metal gate electrodes for dual gate CMOS devices,” in International Electron Devices Meeting. Technical Digest (Cat. No. 01CH37224) (IEEE, 2001), pp. 30.36.31–30.36.34.

Yong, K.-T.

S. Zeng, S. Hu, J. Xia, T. Anderson, X.-Q. Dinh, X.-M. Meng, P. Coquet, and K.-T. Yong, “Graphene-MoS2 hybrid nanostructures enhanced surface plasmon resonance biosensors,” Sens. Actuators B Chem. 207, 801–810 (2015).
[Crossref]

Yoo, D.

O. Limaj, D. Etezadi, N. J. Wittenberg, D. Rodrigo, D. Yoo, S.-H. Oh, and H. Altug, “Infrared plasmonic biosensor for real-time and label-free monitoring of lipid membranes,” Nano Lett. 16, 1502–1508 (2016).
[Crossref]

Young, C.

S.-S. Kim, C. Young, and B. Mizaikoff, “Miniaturized mid-infrared sensor technologies,” Anal. Bioanal. Chem. 390, 231–237 (2008).
[Crossref]

Yu, F.

Z. Zhao, G. Li, F. Yu, H. Yang, X. Chen, and W. Lu, “Sub-wavelength grating enhanced ultra-narrow graphene perfect absorber,” Plasmonics 13, 2267–2272 (2018).
[Crossref]

Yu, L.

R. Li, D. Wu, Y. Liu, L. Yu, Z. Yu, and H. Ye, “Infrared plasmonic refractive index sensor with ultra-high figure of merit based on the optimized all-metal grating,” Nanoscale Res. Lett. 12, 1 (2017).
[Crossref]

Yu, S.

X. Li and S. Yu, “Extremely high sensitive plasmonic refractive index sensors based on metallic grating,” Plasmonics 5, 389–394 (2010).
[Crossref]

Yu, Z.

R. Li, D. Wu, Y. Liu, L. Yu, Z. Yu, and H. Ye, “Infrared plasmonic refractive index sensor with ultra-high figure of merit based on the optimized all-metal grating,” Nanoscale Res. Lett. 12, 1 (2017).
[Crossref]

Yuan, X.

R. Yang, W. Xu, Z. Zhu, J. Zhang, K. Liu, C. Guo, and X. Yuan, “Tuneable infrared perfect absorber based on spatially separated double-layer graphene,” J. Opt. 21, 085002 (2019).
[Crossref]

F. Xiong, J. Zhou, W. Xu, Z. Zhu, X. Yuan, J. Zhang, and S. Qin, “Visible to near-infrared coherent perfect absorption in monolayer graphene,” J. Opt. 20, 095401 (2018).
[Crossref]

B. Wang, X. Zhang, X. Yuan, and J. Teng, “Optical coupling of surface plasmons between graphene sheets,” Appl. Phys. Lett. 100, 131111 (2012).
[Crossref]

Yue, W.

W. Yue, Z. Wang, Y. Yang, J. Han, J. Li, Z. Guo, H. Tan, and X.-X. Zhang, “High performance infrared plasmonic metamaterial absorbers and their applications to thin-film sensing,” Plasmonics 11, 1557–1563 (2016).
[Crossref]

Yun, M.

P. Sun, F. Xia, L. Liu, L. Jiao, K. Chen, M. Li, Q. Liu, and M. Yun, “Tunable graphene-based infrared perfect absorber for sensing,” in IEEE International Conference on Manipulation, Manufacturing and Measurement on the Nanoscale (3M-NANO) (IEEE, 2017), pp. 83–86.

Zare, M. S.

R. Rashiditabar, N. Nozhat, and M. S. Zare, “Tunable plasmonic absorber based on TiN-nanosphere liquid crystal hybrid in visible and near-infrared regions,” Plasmonics 13, 1853–1859 (2018).
[Crossref]

Zeng, C.

H. Lu, C. Zeng, Q. Zhang, X. Liu, M. M. Hossain, P. Reineck, and M. Gu, “Graphene-based active slow surface plasmon polaritons,” Sci. Rep. 5, 8443 (2015).
[Crossref]

Zeng, S.

S. Zeng, S. Hu, J. Xia, T. Anderson, X.-Q. Dinh, X.-M. Meng, P. Coquet, and K.-T. Yong, “Graphene-MoS2 hybrid nanostructures enhanced surface plasmon resonance biosensors,” Sens. Actuators B Chem. 207, 801–810 (2015).
[Crossref]

Zhai, X.

H. Li, L. Wang, and X. Zhai, “Tunable graphene-based mid-infrared plasmonic wide-angle narrowband perfect absorber,” Sci. Rep. 6, 36651 (2016).
[Crossref]

H.-J. Li, L.-L. Wang, B. Sun, Z.-R. Huang, and X. Zhai, “Tunable mid-infrared plasmonic band-pass filter based on a single graphene sheet with cavities,” J. Appl. Phys. 116, 224505 (2014).
[Crossref]

Zhang, J.

R. Yang, W. Xu, Z. Zhu, J. Zhang, K. Liu, C. Guo, and X. Yuan, “Tuneable infrared perfect absorber based on spatially separated double-layer graphene,” J. Opt. 21, 085002 (2019).
[Crossref]

F. Xiong, J. Zhou, W. Xu, Z. Zhu, X. Yuan, J. Zhang, and S. Qin, “Visible to near-infrared coherent perfect absorption in monolayer graphene,” J. Opt. 20, 095401 (2018).
[Crossref]

Zhang, L.

X. Lu, L. Zhang, and T. Zhang, “Nanoslit-microcavity-based narrow band absorber for sensing applications,” Opt. Express 23, 20715–20720 (2015).
[Crossref]

Z. Fei, A. Rodin, G. Andreev, W. Bao, A. McLeod, M. Wagner, L. Zhang, Z. Zhao, M. Thiemens, and G. Dominguez, “Gate-tuning of graphene plasmons revealed by infrared nano-imaging,” Nature 487, 82–85 (2012).
[Crossref]

Zhang, Q.

H. Lu, C. Zeng, Q. Zhang, X. Liu, M. M. Hossain, P. Reineck, and M. Gu, “Graphene-based active slow surface plasmon polaritons,” Sci. Rep. 5, 8443 (2015).
[Crossref]

Zhang, S.

Y. Liu, Y. Q. Zhang, X. R. Jin, S. Zhang, and Y. P. Lee, “Dual-band infrared perfect absorber for plasmonic sensor based on the electromagnetically induced reflection-like effect,” Opt. Commun. 371, 173–177 (2016).
[Crossref]

Zhang, T.

Zhang, X.

Y. Zhao, X. Hu, G. Chen, X. Zhang, Z. Tan, J. Chen, R. S. Ruoff, Y. Zhu, and Y. Lu, “Infrared biosensors based on graphene plasmonics: modeling,” Phys. Chem. Chem. Phys. 15, 17118–17125 (2013).
[Crossref]

B. Wang, X. Zhang, X. Yuan, and J. Teng, “Optical coupling of surface plasmons between graphene sheets,” Appl. Phys. Lett. 100, 131111 (2012).
[Crossref]

Zhang, X.-X.

W. Yue, Z. Wang, Y. Yang, J. Han, J. Li, Z. Guo, H. Tan, and X.-X. Zhang, “High performance infrared plasmonic metamaterial absorbers and their applications to thin-film sensing,” Plasmonics 11, 1557–1563 (2016).
[Crossref]

Zhang, Y. Q.

Y. Liu, Y. Q. Zhang, X. R. Jin, S. Zhang, and Y. P. Lee, “Dual-band infrared perfect absorber for plasmonic sensor based on the electromagnetically induced reflection-like effect,” Opt. Commun. 371, 173–177 (2016).
[Crossref]

Zhao, Y.

Y. Zhao, X. Hu, G. Chen, X. Zhang, Z. Tan, J. Chen, R. S. Ruoff, Y. Zhu, and Y. Lu, “Infrared biosensors based on graphene plasmonics: modeling,” Phys. Chem. Chem. Phys. 15, 17118–17125 (2013).
[Crossref]

Zhao, Z.

Z. Zhao, G. Li, F. Yu, H. Yang, X. Chen, and W. Lu, “Sub-wavelength grating enhanced ultra-narrow graphene perfect absorber,” Plasmonics 13, 2267–2272 (2018).
[Crossref]

Z. Fei, A. Rodin, G. Andreev, W. Bao, A. McLeod, M. Wagner, L. Zhang, Z. Zhao, M. Thiemens, and G. Dominguez, “Gate-tuning of graphene plasmons revealed by infrared nano-imaging,” Nature 487, 82–85 (2012).
[Crossref]

Zheng, G.

P. Zhou and G. Zheng, “High-efficient light absorption of monolayer graphene via cylindrical dielectric arrays and the sensing application,” Opt. Mater. 78, 471–476 (2018).
[Crossref]

Zhou, J.

F. Xiong, J. Zhou, W. Xu, Z. Zhu, X. Yuan, J. Zhang, and S. Qin, “Visible to near-infrared coherent perfect absorption in monolayer graphene,” J. Opt. 20, 095401 (2018).
[Crossref]

Zhou, P.

P. Zhou and G. Zheng, “High-efficient light absorption of monolayer graphene via cylindrical dielectric arrays and the sensing application,” Opt. Mater. 78, 471–476 (2018).
[Crossref]

Zhu, C.

Y. Ren, C. Zhu, W. Cai, H. Li, H. Ji, I. Kholmanov, Y. Wu, R. D. Piner, and R. S. Ruoff, “Detection of sulfur dioxide gas with graphene field effect transistor,” Appl. Phys. Lett. 100, 163114 (2012).
[Crossref]

Zhu, J.-H.

J.-P. Guo, J.-H. Zhu, and X.-G. Huang, “Index sensing characteristics of the plasmonic sensor based on metal-insulator-metal waveguide-coupled structure,” Optoelectron. Lett. 9, 321–324 (2013).
[Crossref]

Zhu, Y.

X. Yan, T. Wang, X. Han, S. Xiao, Y. Zhu, and Y. Wang, “High sensitivity nanoplasmonic sensor based on plasmon-induced transparency in a graphene nanoribbon waveguide coupled with detuned graphene square-nanoring resonators,” Plasmonics 12, 1449–1455 (2017).
[Crossref]

Y. Zhao, X. Hu, G. Chen, X. Zhang, Z. Tan, J. Chen, R. S. Ruoff, Y. Zhu, and Y. Lu, “Infrared biosensors based on graphene plasmonics: modeling,” Phys. Chem. Chem. Phys. 15, 17118–17125 (2013).
[Crossref]

Zhu, Z.

R. Yang, W. Xu, Z. Zhu, J. Zhang, K. Liu, C. Guo, and X. Yuan, “Tuneable infrared perfect absorber based on spatially separated double-layer graphene,” J. Opt. 21, 085002 (2019).
[Crossref]

F. Xiong, J. Zhou, W. Xu, Z. Zhu, X. Yuan, J. Zhang, and S. Qin, “Visible to near-infrared coherent perfect absorption in monolayer graphene,” J. Opt. 20, 095401 (2018).
[Crossref]

Zou, Y.

V. Singh, P. T. Lin, N. Patel, H. Lin, L. Li, Y. Zou, F. Deng, C. Ni, J. Hu, and J. Giammarco, “Mid-infrared materials and devices on a Si platform for optical sensing,” Sci. Technol. Adv. Mater. 15, 014603 (2014).
[Crossref]

ACS Nano (3)

H. J. Park, T. Xu, J. Y. Lee, A. Ledbetter, and L. J. Guo, “Photonic color filters integrated with organic solar cells for energy harvesting,” ACS Nano 5, 7055–7060 (2011).
[Crossref]

Z. Fang, S. Thongrattanasiri, A. Schlather, Z. Liu, L. Ma, Y. Wang, P. M. Ajayan, P. Nordlander, N. J. Halas, and F. J. García de Abajo, “Gated tunability and hybridization of localized plasmons in nanostructured graphene,” ACS Nano 7, 2388–2395 (2013).
[Crossref]

P.-Y. Chen and A. Alu, “Atomically thin surface cloak using graphene monolayers,” ACS Nano 5, 5855–5863 (2011).
[Crossref]

ACS Photon. (1)

F. J. Garcia de Abajo, “Graphene plasmonics: challenges and opportunities,” ACS Photon. 1, 135–152 (2014).
[Crossref]

Adv. Device Mater. (1)

E. Baudet, A. Gutierrez-Arroyo, M. Baillieul, J. Charrier, P. Němec, L. Bodiou, J. Lemaitre, E. Rinnert, K. Michel, and B. Bureau, “Development of an evanescent optical integrated sensor in the mid-infrared for detection of pollution in groundwater or seawater,” Adv. Device Mater. 3, 23–29 (2017).
[Crossref]

Anal. Bioanal. Chem. (1)

S.-S. Kim, C. Young, and B. Mizaikoff, “Miniaturized mid-infrared sensor technologies,” Anal. Bioanal. Chem. 390, 231–237 (2008).
[Crossref]

Anal. Chem. (3)

C. K. Bryant, P. T. LaPuma, G. L. Hook, and E. J. Houser, “Chemical agent identification by field-based attenuated total reflectance infrared detection and solid-phase microextraction,” Anal. Chem. 79, 2334–2340 (2007).
[Crossref]

C. J. Koester and A. Moulik, “Trends in environmental analysis,” Anal. Chem. 77, 3737–3754 (2005).
[Crossref]

M. Karlowatz, M. Kraft, and B. Mizaikoff, “Simultaneous quantitative determination of benzene, toluene, and xylenes in water using mid-infrared evanescent field spectroscopy,” Anal. Chem. 76, 2643–2648 (2004).
[Crossref]

Appl. Opt. (1)

Appl. Phys. Lett. (3)

B. Wang, X. Zhang, X. Yuan, and J. Teng, “Optical coupling of surface plasmons between graphene sheets,” Appl. Phys. Lett. 100, 131111 (2012).
[Crossref]

Y. Ren, C. Zhu, W. Cai, H. Li, H. Ji, I. Kholmanov, Y. Wu, R. D. Piner, and R. S. Ruoff, “Detection of sulfur dioxide gas with graphene field effect transistor,” Appl. Phys. Lett. 100, 163114 (2012).
[Crossref]

A. Lipatov, A. Varezhnikov, M. Augustin, M. Bruns, M. Sommer, V. Sysoev, A. Kolmakov, and A. Sinitskii, “Intrinsic device-to-device variation in graphene field-effect transistors on a Si/SiO2 substrate as a platform for discriminative gas sensing,” Appl. Phys. Lett. 104, 013114 (2014).
[Crossref]

Environ. Sci. Technol. (1)

B. Pejcic, P. Eadington, and A. Ross, “Environmental monitoring of hydrocarbons: a chemical sensor perspective,” Environ. Sci. Technol. 41, 6333–6342 (2007).
[Crossref]

IEEE J. Sel. Top. Quantum Electron. (1)

I. Choi and Y. Choi, “Plasmonic nanosensors: review and prospect,” IEEE J. Sel. Top. Quantum Electron. 18, 1110–1121 (2012).
[Crossref]

IEEE Photon. Technol. Lett. (2)

K. Walls, Q. Chen, S. Collins, D. R. Cumming, and T. D. Drysdale, “Automated design, fabrication, and characterization of color matching plasmonic filters,” IEEE Photon. Technol. Lett. 24, 602–604 (2012).
[Crossref]

A. Farmani and A. Mir, “Graphene sensor based on surface plasmon resonance for optical scanning,” IEEE Photon. Technol. Lett. 31, 643–646 (2019).
[Crossref]

IEEE Sens. J. (1)

A. Alipour, A. Farmani, and A. Mir, “High sensitivity and tunable nanoscale sensor based on plasmon-induced transparency in plasmonic metasurface,” IEEE Sens. J. 18, 7047–7054 (2018).
[Crossref]

J. Appl. Phys. (3)

H.-J. Li, L.-L. Wang, B. Sun, Z.-R. Huang, and X. Zhai, “Tunable mid-infrared plasmonic band-pass filter based on a single graphene sheet with cavities,” J. Appl. Phys. 116, 224505 (2014).
[Crossref]

G. W. Hanson, “Dyadic Green’s functions and guided surface waves for a surface conductivity model of graphene, ”J. Appl. Phys. 103, 064302 (2008).
[Crossref]

P. Patsalas and S. Logothetidis, “Optical, electronic, and transport properties of nanocrystalline titanium nitride thin films,” J. Appl. Phys. 90, 4725–4734 (2001).
[Crossref]

J. Artif. Intell. Data Mining (1)

A. Mahanipour, F. F. Mahani, and A. Mokhtari, “Optimized design of nanohole array-based plasmonic color filters integrating genetic algorithm with FDTD solutions,” J. Artif. Intell. Data Mining 7, 279–286 (2019).
[Crossref]

J. Lightwave Technol. (1)

J. Nanoelectron. Optoelectron. (2)

F. F. Mahani and A. Mokhtari, “Performance improvement of organic solar cells using a hybrid color filter electrode of graphene-aluminum nanorings,” J. Nanoelectron. Optoelectron. 13, 1917–1923 (2018).
[Crossref]

F. F. Mahani and A. Mokhtari, “TiO2 circular nano-gratings as anti-reflective coatings and potential color filters for efficient organic solar cells,” J. Nanoelectron. Optoelectron. 13, 1624–1629 (2018).
[Crossref]

J. Opt. (5)

S. Asgari, Z. G. Kashani, and N. Granpayeh, “Tunable nano-scale graphene-based devices in mid-infrared wavelengths composed of cylindrical resonators,” J. Opt. 20, 045001 (2018).
[Crossref]

A. Y. Nikitin, S. Maier, and L. Martin-Moreno, “Special issue on graphene nanophotonics,” J. Opt. 15, 110201 (2013).
[Crossref]

F. Xiong, J. Zhou, W. Xu, Z. Zhu, X. Yuan, J. Zhang, and S. Qin, “Visible to near-infrared coherent perfect absorption in monolayer graphene,” J. Opt. 20, 095401 (2018).
[Crossref]

Z. Tao, H. Dong, Y. Duan, J. Liu, and B. Cao, “Tunable coupled terahertz surface plasmon polaritons in graphene metamaterials,” J. Opt. 21, 045107 (2019).
[Crossref]

R. Yang, W. Xu, Z. Zhu, J. Zhang, K. Liu, C. Guo, and X. Yuan, “Tuneable infrared perfect absorber based on spatially separated double-layer graphene,” J. Opt. 21, 085002 (2019).
[Crossref]

J. Opt. Soc. Am. B (4)

J. Phys. D (1)

G. Li, X. Chen, O. Li, C. Shao, Y. Jiang, L. Huang, B. Ni, W. Hu, and W. Lu, “A novel plasmonic resonance sensor based on an infrared perfect absorber,” J. Phys. D 45, 205102 (2012).
[Crossref]

Materials (1)

A. Rifat, M. Rahmani, L. Xu, and A. Miroshnichenko, “Hybrid metasurface based tunable near-perfect absorber and plasmonic sensor,” Materials 11, 1091 (2018).
[Crossref]

Nano Lett. (4)

V. R. Shrestha, S.-S. Lee, E.-S. Kim, and D.-Y. Choi, “Aluminum plasmonics based highly transmissive polarization-independent subtractive color filters exploiting a nanopatch array,” Nano Lett. 14, 6672–6678 (2014).
[Crossref]

F. H. Koppens, D. E. Chang, and F. J. Garcia de Abajo, “Graphene plasmonics: a platform for strong light-matter interactions,” Nano Lett. 11, 3370–3377 (2011).
[Crossref]

O. Limaj, D. Etezadi, N. J. Wittenberg, D. Rodrigo, D. Yoo, S.-H. Oh, and H. Altug, “Infrared plasmonic biosensor for real-time and label-free monitoring of lipid membranes,” Nano Lett. 16, 1502–1508 (2016).
[Crossref]

N. Liu, M. Mesch, T. Weiss, M. Hentschel, and H. Giessen, “Infrared perfect absorber and its application as plasmonic sensor,” Nano Lett. 10, 2342–2348 (2010).
[Crossref]

Nanoscale Res. Lett. (1)

R. Li, D. Wu, Y. Liu, L. Yu, Z. Yu, and H. Ye, “Infrared plasmonic refractive index sensor with ultra-high figure of merit based on the optimized all-metal grating,” Nanoscale Res. Lett. 12, 1 (2017).
[Crossref]

Nanotechnology (1)

F. F. Mahani, A. Mokhtari, and M. Mehran, “Dual mode operation, highly selective nanohole array-based plasmonic colour filters,” Nanotechnology 28, 385203 (2017).
[Crossref]

Nat. Photonics (1)

F. Bonaccorso, Z. Sun, T. Hasan, and A. Ferrari, “Graphene photonics and optoelectronics,” Nat. Photonics 4, 611–622 (2010).
[Crossref]

Nature (1)

Z. Fei, A. Rodin, G. Andreev, W. Bao, A. McLeod, M. Wagner, L. Zhang, Z. Zhao, M. Thiemens, and G. Dominguez, “Gate-tuning of graphene plasmons revealed by infrared nano-imaging,” Nature 487, 82–85 (2012).
[Crossref]

Opt. Commun. (2)

Y. Liu, Y. Q. Zhang, X. R. Jin, S. Zhang, and Y. P. Lee, “Dual-band infrared perfect absorber for plasmonic sensor based on the electromagnetically induced reflection-like effect,” Opt. Commun. 371, 173–177 (2016).
[Crossref]

G. Dabos, A. Manolis, A. Giesecke, C. Porschatis, B. Chmielak, T. Wahlbrink, N. Pleros, and D. Tsiokos, “TM grating coupler on low-loss LPCVD based Si3N4 waveguide platform,” Opt. Commun. 405, 35–38 (2017).
[Crossref]

Opt. Express (3)

Opt. Mater. (4)

N. Venugopal, V. Gerasimov, A. Ershov, S. Karpov, and S. Polyutov, “Titanium nitride as light trapping plasmonic material in silicon solar cell,” Opt. Mater. 72, 397–402 (2017).
[Crossref]

F. F. Mahani and A. Mokhtari, “Polarization-tuned chromatic electrodes using hybrid design of graphene-aluminum nanocross arrays for efficient organic solar cells,” Opt. Mater. 84, 158–165 (2018).
[Crossref]

Z. Khezripour, F. F. Mahani, and A. Mokhtari, “Performance improvement of ultrathin organic solar cells utilizing light-trapping aluminum-titanium nitride nanosquare arrays,” Opt. Mater. 84, 651–657 (2018).
[Crossref]

P. Zhou and G. Zheng, “High-efficient light absorption of monolayer graphene via cylindrical dielectric arrays and the sensing application,” Opt. Mater. 78, 471–476 (2018).
[Crossref]

Opt. Mater. Express (4)

Opt. Quantum Electron. (1)

A. E. Khalil, A. H. El-Saeed, M. A. Ibrahim, M. E. Hashish, M. R. Abdelmonem, M. F. O. Hameed, M. Y. Azab, and S. Obayya, “Highly sensitive photonic crystal fiber biosensor based on titanium nitride,” Opt. Quantum Electron. 50, 158 (2018).
[Crossref]

Optik (1)

A. H. Kazemi, F. F. Mahani, and A. Mokhtari, “Peak amplitude enhancement of photoconductive antenna using periodic nanoslit and graphene in the THz band,” Optik 185, 114–120 (2019).
[Crossref]

Optoelectron. Lett. (1)

J.-P. Guo, J.-H. Zhu, and X.-G. Huang, “Index sensing characteristics of the plasmonic sensor based on metal-insulator-metal waveguide-coupled structure,” Optoelectron. Lett. 9, 321–324 (2013).
[Crossref]

Photon. Res. (1)

Phys. Chem. Chem. Phys. (1)

Y. Zhao, X. Hu, G. Chen, X. Zhang, Z. Tan, J. Chen, R. S. Ruoff, Y. Zhu, and Y. Lu, “Infrared biosensors based on graphene plasmonics: modeling,” Phys. Chem. Chem. Phys. 15, 17118–17125 (2013).
[Crossref]

Phys. Rev. B (1)

P. B. Johnson and R.-W. Christy, “Optical constants of the noble metals,” Phys. Rev. B 6, 4370 (1972).
[Crossref]

Plasmonics (7)

R. Rashiditabar, N. Nozhat, and M. S. Zare, “Tunable plasmonic absorber based on TiN-nanosphere liquid crystal hybrid in visible and near-infrared regions,” Plasmonics 13, 1853–1859 (2018).
[Crossref]

C. Sun, “On the plasmonic properties of Ag@ SiO2@ graphene core-shell nanostructures,” Plasmonics 13, 1671–1680 (2018).
[Crossref]

X. Yan, T. Wang, X. Han, S. Xiao, Y. Zhu, and Y. Wang, “High sensitivity nanoplasmonic sensor based on plasmon-induced transparency in a graphene nanoribbon waveguide coupled with detuned graphene square-nanoring resonators,” Plasmonics 12, 1449–1455 (2017).
[Crossref]

X. Li and S. Yu, “Extremely high sensitive plasmonic refractive index sensors based on metallic grating,” Plasmonics 5, 389–394 (2010).
[Crossref]

W. Yue, Z. Wang, Y. Yang, J. Han, J. Li, Z. Guo, H. Tan, and X.-X. Zhang, “High performance infrared plasmonic metamaterial absorbers and their applications to thin-film sensing,” Plasmonics 11, 1557–1563 (2016).
[Crossref]

A. De Marcellis, E. Palange, M. Janneh, C. Rizza, A. Ciattoni, and S. Mengali, “Design optimisation of plasmonic metasurfaces for mid-infrared high-sensitivity chemical sensing,” Plasmonics 12, 293–298 (2017).
[Crossref]

Z. Zhao, G. Li, F. Yu, H. Yang, X. Chen, and W. Lu, “Sub-wavelength grating enhanced ultra-narrow graphene perfect absorber,” Plasmonics 13, 2267–2272 (2018).
[Crossref]

Procedia Eng. (1)

N. S. Lawand, P. J. French, J. J. Briaire, and J. H. M. Frijns, “Thin titanium nitride films deposited using DC magnetron sputtering used for neural stimulation and sensing purposes,” Procedia Eng. 47, 726–729 (2012).
[Crossref]

Sci. Rep. (3)

H. Li, L. Wang, and X. Zhai, “Tunable graphene-based mid-infrared plasmonic wide-angle narrowband perfect absorber,” Sci. Rep. 6, 36651 (2016).
[Crossref]

D. J. Rowe, D. Smith, and J. S. Wilkinson, “Complex refractive index spectra of whole blood and aqueous solutions of anticoagulants, analgesics and buffers in the mid-infrared,” Sci. Rep. 7, 7356 (2017).
[Crossref]

H. Lu, C. Zeng, Q. Zhang, X. Liu, M. M. Hossain, P. Reineck, and M. Gu, “Graphene-based active slow surface plasmon polaritons,” Sci. Rep. 5, 8443 (2015).
[Crossref]

Sci. Technol. Adv. Mater. (1)

V. Singh, P. T. Lin, N. Patel, H. Lin, L. Li, Y. Zou, F. Deng, C. Ni, J. Hu, and J. Giammarco, “Mid-infrared materials and devices on a Si platform for optical sensing,” Sci. Technol. Adv. Mater. 15, 014603 (2014).
[Crossref]

Sens. Actuators B Chem. (1)

S. Zeng, S. Hu, J. Xia, T. Anderson, X.-Q. Dinh, X.-M. Meng, P. Coquet, and K.-T. Yong, “Graphene-MoS2 hybrid nanostructures enhanced surface plasmon resonance biosensors,” Sens. Actuators B Chem. 207, 801–810 (2015).
[Crossref]

Sensors (1)

B. Pejcic, M. Myers, and A. Ross, “Mid-infrared sensing of organic pollutants in aqueous environments,” Sensors 9, 6232–6253 (2009).
[Crossref]

Vaccine (1)

C. E. Nilsson, S. Abbas, M. Bennemo, A. Larsson, M. Hämäläinen, and Å. Frostell-Karlsson, “A novel assay for influenza virus quantification using surface plasmon resonance,” Vaccine 28, 759–766 (2010).
[Crossref]

Other (11)

P. Sun, F. Xia, L. Liu, L. Jiao, K. Chen, M. Li, Q. Liu, and M. Yun, “Tunable graphene-based infrared perfect absorber for sensing,” in IEEE International Conference on Manipulation, Manufacturing and Measurement on the Nanoscale (3M-NANO) (IEEE, 2017), pp. 83–86.

E. D. Palik, Handbook of Optical Constants of Solids (Academic, 1998), Vol. 3.

M. Salemizadeh, F. F. Mahani, and A. Mokhtari, “Design and development of efficient plasmonic sensors based on bi-layer of silver-SiO2 nanodisk arrays,” in 27th Iranian Conference on Electrical Engineering (ICEE) (IEEE, 2019), pp. 311–314.

M. Danaie and A. Shahzadi, “Design of a high-resolution metal-insulator–metal plasmonic refractive index sensor based on a ring-shaped Si resonator,” Plasmonics, 1–13 (2019).
[Crossref]

F. F. Mahani, A. Mahanipour, and A. Mokhtari, “Optimization of plasmonic color filters for CMOS image sensors by genetic algorithm,” in 2nd Conference on Swarm Intelligence and Evolutionary Computation (CSIEC) (2017), pp. 12–15.

F. F. Mahani and A. Mokhtari, “Performance enhancement of nanohole array-based plasmonic color filters for CMOS image sensors,” in 23rd Iranian Conference on Optics and Photonics (ICOP 2017) and the 9th Iranian Conference on Photonics Engineering and Technology (ICPET 2017) (2017).

Z. Khezripour, F. F. Mahani, and A. Mokhtari, “Optimized design of silicon-based moth eye nanostructures for thin film solar cells,” in 3rd Conference on Swarm Intelligence and Evolutionary Computation (CSIEC) (2018).

F. F. Mahani and A. Mokhtari, “Enhancement of ITO-free organic solar cells utilizing plasmonic nanohole electrodes,” in 7th International Conference on Nanotechnology (ICN) (2017).

G. Li, X. Wu, Y. Jiang, C. Shao, L. Huang, X. Chen, W. Hu, and W. Lu, “The improvement of figure of merit with infrared perfect absorber for plasmonic resonance sensing,” in 12th International Conference on Numerical Simulation of Optoelectronic Devices (NUSOD) (IEEE, 2012), pp. 3–4.

D.-G. Park, T.-H. Cha, K.-Y. Lim, H.-J. Cho, T.-K. Kim, S.-A. Jang, Y.-S. Suh, V. Misra, I.-S. Yeo, and J.-S. Roh, “Robust ternary metal gate electrodes for dual gate CMOS devices,” in International Electron Devices Meeting. Technical Digest (Cat. No. 01CH37224) (IEEE, 2001), pp. 30.36.31–30.36.34.

X. Wang and Y. Shi, “Fabrication techniques of graphene nanostructures,” in Renewable Energy (2014), pp. 1–30.

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (9)

Fig. 1.
Fig. 1. 3D and cross-sectional schematic of the proposed graphene-TiN plasmonic sensor.
Fig. 2.
Fig. 2. (a) Real and (b) imaginary parts of RI for TiN, gold, and silver.
Fig. 3.
Fig. 3. Fabrication proposal for realization of the sensor scheme.
Fig. 4.
Fig. 4. (a) Reflection, absorption, and transmission characteristics of the proposed sensor. The normalized electric field distribution ( ${E_y}$ ) at the resonant wavelength for (b) the double-layer and (c) single-layer graphene strips.
Fig. 5.
Fig. 5. Absorption spectra of the proposed sensor for different RIs of the surrounding medium.
Fig. 6.
Fig. 6. (a) Absorption spectra of the proposed sensor for different RIs of the surrounding medium with 0.02 steps; (b) peak shifts of the resonant wavelengths as a function of small variations in the RI.
Fig. 7.
Fig. 7. (a) Contour color map of the absorption spectra as function of the incident wavelength and the periodicity of graphene nanograting arrays; (b) calculated sensitivity of the structure for different periodicities.
Fig. 8.
Fig. 8. Calculated sensitivity of the structure as a function of (a) the graphene widths, (b) the distance between the top and bottom graphene strips, (c) chemical potential of graphene, and (d) the distance between the bottom graphene strips and the TiN ground plate.
Fig. 9.
Fig. 9. (a) Absorption characteristics of the sensor in the presence of air, normal water, and a minimum dangerous level of BTX organic pollutants in water; (b) absorption spectra for different chemical potentials of graphene strips.

Tables (1)

Tables Icon

Table 1. Geometrical Parameters of the Proposed Graphene-TiN Plasmonic Sensor

Equations (2)

Equations on this page are rendered with MathJax. Learn more.

F O M = S F W H M ( R I U 1 ) .
S = Δ λ r e s Δ n ( n m R I U ) .

Metrics