Abstract

We study the orbital angular momentum (OAM) transfer from a weak Laguerre–Gaussian (LG) field to a weak plane wave in two closed-loop three-level $ V $-type atomic systems. In the first scheme, the atomic system has two non-degenerate upper levels where the corresponding transition is excited by a microwave plane wave. It is analytically shown that the microwave field induces an OAM transfer from an LG field to a generated third field. It is demonstrated that the efficiency of the OAM transfer decreases when the thermal velocity distribution of atoms is considered. In the second scheme, we consider a three-level $ V $-type atomic system with two near-degenerate excited states and study the effect of the quantum interference due to the spontaneous emission on the OAM transfer. It is found that spontaneously generated coherence (SGC) induces the OAM transfer from the LG field to the weak planar field, and the OAM transfer does not occur in the absence of the SGC. The suggested models offer a rather simple method for the OAM transfer that can be used in quantum information processing and data storage.

© 2019 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Ultraslow optical solitons in atomic media with spontaneously generated coherence

Chao Hang and Guoxiang Huang
J. Opt. Soc. Am. B 29(8) 2009-2015 (2012)

Gain spectrum of a laser-driven tripod-type atom dynamically induced in the presence of spontaneously generated coherence

Si-Cong Tian, Ren-Gang Wan, Zhi-Hui Kang, Hang Zhang, Yun Jiang, Hai-Ning Cui, and Jin-Yue Gao
J. Opt. Soc. Am. B 29(5) 881-890 (2012)

Narrow band amplification of light carrying orbital angular momentum

G. C. Borba, S. Barreiro, L. Pruvost, D. Felinto, and J. W. R. Tabosa
Opt. Express 24(9) 10078-10086 (2016)

References

  • View by:
  • |
  • |
  • |

  1. Z. Ficek and S. Swain, Quantum Coherence and Interference: Theory and Experiments (Springer, 2004).
  2. J. Javanainen, “Effect of state superpositions created by spontaneous emission on laser-driven transitions,” Europhys. Lett. 17, 407–412 (1992).
    [Crossref]
  3. E. Paspalakis, S. Q. Gong, and P. L. Knight, “Spontaneous emission-induced coherent effects in absorption and dispersion of a V-type three-level atom,” Opt. Commun. 152, 293–298 (1998).
    [Crossref]
  4. D. C. Cheng, C. P. Liu, and S. Q. Gong, “Optical bistability and multistability via the effect of spontaneously generated coherence in a three-level ladder-type atomic system,” Phys. Lett. A 332, 244–249 (2004).
    [Crossref]
  5. S. Menon and G. S. Agarwal, “Effects of spontaneously generated coherence on the pump-probe response of a Λ system,” Phys. Rev. A 57, 4014–4018 (1998).
    [Crossref]
  6. E. Paspalakis, N. J. Kylstra, and P. L. Knight, “Transparency induced via decay interference,” Phys. Rev. Lett. 82, 2079–2082 (1999).
    [Crossref]
  7. S. Menon and G. S. Agarwal, “Gain components in the Autler-Townes doublet from quantum interferences in decay channels,” Phys. Rev. A 61, 013807 (1999).
    [Crossref]
  8. A. Joshi, W. Yang, and M. Xiao, “Effect of spontaneously generated coherence on optical bistability in three-level Λ-type atomic system,” Phys. Lett. A 315, 203–207 (2003).
    [Crossref]
  9. A. J. Li, X. L. Song, X. G. Wei, L. Wang, and J. Y. Gao, “Effects of spontaneously generated coherence in a microwave-driven four-level atomic system,” Phys. Rev. A 77, 053806 (2008).
    [Crossref]
  10. X. A. Yan, L. Q. Wang, B. Y. Yin, W. J. Jiang, H. B. Zheng, J. P. Song, and Y. P. Zhang, “Effect of spontaneously generated coherence on Kerr nonlinearity in a four-level atomic system,” Phys. Lett. A 372, 6456–6460 (2008).
    [Crossref]
  11. W. J. Jiang, J. P. Song, H. B. Zheng, C. Wu, B. Y. Yin, and Y. Zhang, “Enhancement of Kerr nonlinearity via spontaneously generated coherence in a four-level N-type atomic system,” Opt. Commun. 282, 101–105 (2009).
    [Crossref]
  12. K. I. Osman, S. S. Hassan, and A. Joshi, “Effect of spontaneously generated coherence on EIT and its refractive properties in four- and five-levels systems,” Eur. Phys. J. D 54, 119–130 (2009).
    [Crossref]
  13. S. M. Mousavi, L. Safari, M. Mahmoudi, and M. Sahrai, “Effect of quantum interference on the optical properties of a three-level V-type atomic system beyond the two-photon resonance condition,” J. Phys. B 43, 165501 (2010).
    [Crossref]
  14. L. Allen, M. W. Beijersbergen, R. J. C. Spreeuw, and J. P. Woerdman, “Orbital angular momentum of light and the transformation of Laguerre-Gaussian laser modes,” Phys. Rev. A 45, 8185–8189 (1992).
    [Crossref]
  15. H. He, M. E. J. Friese, N. R. Heckenberg, and H. Rubinsztein-Dunlop, “Direct observation of transfer of angular momentum to absorptive particles from a laser beam with a phase singularity,” Phys. Rev. Lett. 75, 826–829 (1995).
    [Crossref]
  16. V. Y. Bazhenov, M. V. Vasnetsov, and M. S. Soskin, “Laser beams with screw dislocations in their wavefronts,” JETP Lett. 52, 429–431 (1990).
  17. M. W. Beijersbergen, L. Allen, H. van der Veen, and J. P. Woerdman, “Astigmatic laser mode converters and transfer of orbital angular momentum,” Opt. Commun. 96, 123–132 (1993).
    [Crossref]
  18. M. W. Beijersbergen, R. P. C. Coerwinkel, M. Kristensen, and J. P. Woerdman, “Helical-wavefront laser beams produced with a spiral phaseplate,” Opt. Commun. 112, 321–327 (1994).
    [Crossref]
  19. N. R. Heckenberg, R. McDuff, C. P. Smith, and A. G. White, “Generation of optical phase singularities by computer-generated holograms,” Opt. Lett. 17, 221–223 (1992).
    [Crossref]
  20. A. Jesacher, A. Schwaighofer, S. Fürhapter, C. Maurer, S. Banet, and M. Ritsch-Marte, “Wavefront correction of spatial light modulators using an optical vortex image,” Opt. Express 15, 5801–5808 (2007).
    [Crossref]
  21. N. Radwell, T. W. Clark, B. Piccirillo, S. M. Barnett, and S. Franke-Arnold, “Spatially dependent electromagnetically induced transparency,” Phys. Rev. Lett. 114, 123603 (2015).
    [Crossref]
  22. G. Walker, A. S. Arnold, and S. Franke-Arnold, “Trans-spectral orbital angular momentum transfer via four-wave mixing in Rb vapor,” Phys. Rev. Lett. 108, 243601 (2012).
    [Crossref]
  23. S. Barreiro, J. W. R. Tabosa, J. P. Torres, Y. Deyanova, and L. Torner, “Four-wave mixing of light beams with engineered orbital angular momentum in cold cesium atoms,” Opt. Lett. 29, 1515–1517 (2004).
    [Crossref]
  24. D. Persuy, M. Ziegler, O. Crégut, K. Kheng, M. Gallart, B. Hönerlage, and P. Gilliot, “Four-wave mixing in quantum wells using femtosecond pulses with Laguerre-Gauss modes,” Phys. Rev. B 92, 115312 (2015).
    [Crossref]
  25. R. N. Lanning, Z. Xiao, M. Zhang, I. Novikova, E. E. Mikhailov, and J. P. Dowling, “Gaussian-beam-propagation theory for nonlinear optics involving an analytical treatment of orbital-angular-momentum transfer,” Phys. Rev. A 96, 013830 (2017).
    [Crossref]
  26. K. Dholakia, N. B. Simpson, M. J. Padgett, and L. Allen, “Second-harmonic generation and the orbital angular momentum of light,” Phys. Rev. A 54, R3742–R3745 (1996).
    [Crossref]
  27. J. Courtial, K. Dholakia, L. Allen, and M. J. Padgett, “Second-harmonic generation and the conservation of orbital angular momentum with high-order Laguerre-Gaussian modes,” Phys. Rev. A 56, 4193–4196 (1997).
    [Crossref]
  28. Y. Li, Z. Y. Zhou, D. S. Ding, and B. S. Shi, “Sum frequency generation with two orbital angular momentum carrying laser beams,” J. Opt. Soc. Am. B 32, 407–411 (2015).
    [Crossref]
  29. Z. Amini Sabegh, R. Amiri, and M. Mahmoudi, “Spatially dependent atom-photon entanglement,” Sci. Rep. 8, 13840 (2018).
    [Crossref]
  30. Z. Y. Zhou, Y. Li, D. S. Ding, W. Zhang, S. Shi, B. S. Shi, and G. C. Guo, “Orbital angular momentum photonic quantum interface,” Light Sci. Appl. 5, e16019 (2016).
    [Crossref]
  31. Z. Y. Zhou, D. S. Ding, Y. K. Jiang, Y. Li, S. Shi, X. S. Wang, and B. S. Shi, “Orbital angular momentum light frequency conversion and interference with quasi-phase matching crystals,” Opt. Express 22, 20298–20310 (2014).
    [Crossref]
  32. Z. Y. Zhou, S. L. Liu, Y. Li, D. S. Ding, W. Zhang, S. Shi, M. X. Dong, B. S. Shi, and G. C. Guo, “Orbital angular momentum-entanglement frequency transducer,” Phys. Rev. Lett. 117, 103601 (2016).
    [Crossref]
  33. H. R. Hamedi, J. Ruseckas, and G. Juzeliūnas, “Exchange of optical vortices using an electromagnetically induced transparency based four-wave mixing setup,” Phys. Rev. A 98, 013840 (2018).
    [Crossref]
  34. D. Bortman-Arbiv, A. D. Wilson-Gordon, and H. Friedmann, “Strong parametric amplification by spatial soliton-induced cloning of transverse beam profiles in an all-optical antiwaveguide,” Phys. Rev. A 63, 031801 (2001).
    [Crossref]
  35. J. Ruseckas, A. Mekys, and G. Juzeliūnas, “Slow polaritons with orbital angular momentum in atomic gases,” Phys. Rev. A 83, 023812 (2011).
    [Crossref]
  36. J. Ruseckas, V. Kudriašov, A. Y. Ite, and G. Juzeliūnas, “Transfer of orbital angular momentum of light using two-component slow light,” Phys. Rev. A 87, 053840 (2013).
    [Crossref]
  37. Z. A. Sabegh, M. A. Maleki, and M. Mahmoudi, “Microwave-induced orbital angular momentum transfer,” Sci. Rep. 9, 3519 (2019).
    [Crossref]
  38. D. A. Tate and T. F. Gallagher, “Microwave-optical two-photon excitation of Rydberg states,” Phys. Rev. A 97, 033410 (2018).
    [Crossref]
  39. D. A. Steck, “Sodium D line data,” 2001, http://steck.us/alkalidata/sodiumnumbers.pdf .

2019 (1)

Z. A. Sabegh, M. A. Maleki, and M. Mahmoudi, “Microwave-induced orbital angular momentum transfer,” Sci. Rep. 9, 3519 (2019).
[Crossref]

2018 (3)

D. A. Tate and T. F. Gallagher, “Microwave-optical two-photon excitation of Rydberg states,” Phys. Rev. A 97, 033410 (2018).
[Crossref]

Z. Amini Sabegh, R. Amiri, and M. Mahmoudi, “Spatially dependent atom-photon entanglement,” Sci. Rep. 8, 13840 (2018).
[Crossref]

H. R. Hamedi, J. Ruseckas, and G. Juzeliūnas, “Exchange of optical vortices using an electromagnetically induced transparency based four-wave mixing setup,” Phys. Rev. A 98, 013840 (2018).
[Crossref]

2017 (1)

R. N. Lanning, Z. Xiao, M. Zhang, I. Novikova, E. E. Mikhailov, and J. P. Dowling, “Gaussian-beam-propagation theory for nonlinear optics involving an analytical treatment of orbital-angular-momentum transfer,” Phys. Rev. A 96, 013830 (2017).
[Crossref]

2016 (2)

Z. Y. Zhou, S. L. Liu, Y. Li, D. S. Ding, W. Zhang, S. Shi, M. X. Dong, B. S. Shi, and G. C. Guo, “Orbital angular momentum-entanglement frequency transducer,” Phys. Rev. Lett. 117, 103601 (2016).
[Crossref]

Z. Y. Zhou, Y. Li, D. S. Ding, W. Zhang, S. Shi, B. S. Shi, and G. C. Guo, “Orbital angular momentum photonic quantum interface,” Light Sci. Appl. 5, e16019 (2016).
[Crossref]

2015 (3)

Y. Li, Z. Y. Zhou, D. S. Ding, and B. S. Shi, “Sum frequency generation with two orbital angular momentum carrying laser beams,” J. Opt. Soc. Am. B 32, 407–411 (2015).
[Crossref]

D. Persuy, M. Ziegler, O. Crégut, K. Kheng, M. Gallart, B. Hönerlage, and P. Gilliot, “Four-wave mixing in quantum wells using femtosecond pulses with Laguerre-Gauss modes,” Phys. Rev. B 92, 115312 (2015).
[Crossref]

N. Radwell, T. W. Clark, B. Piccirillo, S. M. Barnett, and S. Franke-Arnold, “Spatially dependent electromagnetically induced transparency,” Phys. Rev. Lett. 114, 123603 (2015).
[Crossref]

2014 (1)

2013 (1)

J. Ruseckas, V. Kudriašov, A. Y. Ite, and G. Juzeliūnas, “Transfer of orbital angular momentum of light using two-component slow light,” Phys. Rev. A 87, 053840 (2013).
[Crossref]

2012 (1)

G. Walker, A. S. Arnold, and S. Franke-Arnold, “Trans-spectral orbital angular momentum transfer via four-wave mixing in Rb vapor,” Phys. Rev. Lett. 108, 243601 (2012).
[Crossref]

2011 (1)

J. Ruseckas, A. Mekys, and G. Juzeliūnas, “Slow polaritons with orbital angular momentum in atomic gases,” Phys. Rev. A 83, 023812 (2011).
[Crossref]

2010 (1)

S. M. Mousavi, L. Safari, M. Mahmoudi, and M. Sahrai, “Effect of quantum interference on the optical properties of a three-level V-type atomic system beyond the two-photon resonance condition,” J. Phys. B 43, 165501 (2010).
[Crossref]

2009 (2)

W. J. Jiang, J. P. Song, H. B. Zheng, C. Wu, B. Y. Yin, and Y. Zhang, “Enhancement of Kerr nonlinearity via spontaneously generated coherence in a four-level N-type atomic system,” Opt. Commun. 282, 101–105 (2009).
[Crossref]

K. I. Osman, S. S. Hassan, and A. Joshi, “Effect of spontaneously generated coherence on EIT and its refractive properties in four- and five-levels systems,” Eur. Phys. J. D 54, 119–130 (2009).
[Crossref]

2008 (2)

A. J. Li, X. L. Song, X. G. Wei, L. Wang, and J. Y. Gao, “Effects of spontaneously generated coherence in a microwave-driven four-level atomic system,” Phys. Rev. A 77, 053806 (2008).
[Crossref]

X. A. Yan, L. Q. Wang, B. Y. Yin, W. J. Jiang, H. B. Zheng, J. P. Song, and Y. P. Zhang, “Effect of spontaneously generated coherence on Kerr nonlinearity in a four-level atomic system,” Phys. Lett. A 372, 6456–6460 (2008).
[Crossref]

2007 (1)

2004 (2)

S. Barreiro, J. W. R. Tabosa, J. P. Torres, Y. Deyanova, and L. Torner, “Four-wave mixing of light beams with engineered orbital angular momentum in cold cesium atoms,” Opt. Lett. 29, 1515–1517 (2004).
[Crossref]

D. C. Cheng, C. P. Liu, and S. Q. Gong, “Optical bistability and multistability via the effect of spontaneously generated coherence in a three-level ladder-type atomic system,” Phys. Lett. A 332, 244–249 (2004).
[Crossref]

2003 (1)

A. Joshi, W. Yang, and M. Xiao, “Effect of spontaneously generated coherence on optical bistability in three-level Λ-type atomic system,” Phys. Lett. A 315, 203–207 (2003).
[Crossref]

2001 (1)

D. Bortman-Arbiv, A. D. Wilson-Gordon, and H. Friedmann, “Strong parametric amplification by spatial soliton-induced cloning of transverse beam profiles in an all-optical antiwaveguide,” Phys. Rev. A 63, 031801 (2001).
[Crossref]

1999 (2)

E. Paspalakis, N. J. Kylstra, and P. L. Knight, “Transparency induced via decay interference,” Phys. Rev. Lett. 82, 2079–2082 (1999).
[Crossref]

S. Menon and G. S. Agarwal, “Gain components in the Autler-Townes doublet from quantum interferences in decay channels,” Phys. Rev. A 61, 013807 (1999).
[Crossref]

1998 (2)

S. Menon and G. S. Agarwal, “Effects of spontaneously generated coherence on the pump-probe response of a Λ system,” Phys. Rev. A 57, 4014–4018 (1998).
[Crossref]

E. Paspalakis, S. Q. Gong, and P. L. Knight, “Spontaneous emission-induced coherent effects in absorption and dispersion of a V-type three-level atom,” Opt. Commun. 152, 293–298 (1998).
[Crossref]

1997 (1)

J. Courtial, K. Dholakia, L. Allen, and M. J. Padgett, “Second-harmonic generation and the conservation of orbital angular momentum with high-order Laguerre-Gaussian modes,” Phys. Rev. A 56, 4193–4196 (1997).
[Crossref]

1996 (1)

K. Dholakia, N. B. Simpson, M. J. Padgett, and L. Allen, “Second-harmonic generation and the orbital angular momentum of light,” Phys. Rev. A 54, R3742–R3745 (1996).
[Crossref]

1995 (1)

H. He, M. E. J. Friese, N. R. Heckenberg, and H. Rubinsztein-Dunlop, “Direct observation of transfer of angular momentum to absorptive particles from a laser beam with a phase singularity,” Phys. Rev. Lett. 75, 826–829 (1995).
[Crossref]

1994 (1)

M. W. Beijersbergen, R. P. C. Coerwinkel, M. Kristensen, and J. P. Woerdman, “Helical-wavefront laser beams produced with a spiral phaseplate,” Opt. Commun. 112, 321–327 (1994).
[Crossref]

1993 (1)

M. W. Beijersbergen, L. Allen, H. van der Veen, and J. P. Woerdman, “Astigmatic laser mode converters and transfer of orbital angular momentum,” Opt. Commun. 96, 123–132 (1993).
[Crossref]

1992 (3)

L. Allen, M. W. Beijersbergen, R. J. C. Spreeuw, and J. P. Woerdman, “Orbital angular momentum of light and the transformation of Laguerre-Gaussian laser modes,” Phys. Rev. A 45, 8185–8189 (1992).
[Crossref]

J. Javanainen, “Effect of state superpositions created by spontaneous emission on laser-driven transitions,” Europhys. Lett. 17, 407–412 (1992).
[Crossref]

N. R. Heckenberg, R. McDuff, C. P. Smith, and A. G. White, “Generation of optical phase singularities by computer-generated holograms,” Opt. Lett. 17, 221–223 (1992).
[Crossref]

1990 (1)

V. Y. Bazhenov, M. V. Vasnetsov, and M. S. Soskin, “Laser beams with screw dislocations in their wavefronts,” JETP Lett. 52, 429–431 (1990).

Agarwal, G. S.

S. Menon and G. S. Agarwal, “Gain components in the Autler-Townes doublet from quantum interferences in decay channels,” Phys. Rev. A 61, 013807 (1999).
[Crossref]

S. Menon and G. S. Agarwal, “Effects of spontaneously generated coherence on the pump-probe response of a Λ system,” Phys. Rev. A 57, 4014–4018 (1998).
[Crossref]

Allen, L.

J. Courtial, K. Dholakia, L. Allen, and M. J. Padgett, “Second-harmonic generation and the conservation of orbital angular momentum with high-order Laguerre-Gaussian modes,” Phys. Rev. A 56, 4193–4196 (1997).
[Crossref]

K. Dholakia, N. B. Simpson, M. J. Padgett, and L. Allen, “Second-harmonic generation and the orbital angular momentum of light,” Phys. Rev. A 54, R3742–R3745 (1996).
[Crossref]

M. W. Beijersbergen, L. Allen, H. van der Veen, and J. P. Woerdman, “Astigmatic laser mode converters and transfer of orbital angular momentum,” Opt. Commun. 96, 123–132 (1993).
[Crossref]

L. Allen, M. W. Beijersbergen, R. J. C. Spreeuw, and J. P. Woerdman, “Orbital angular momentum of light and the transformation of Laguerre-Gaussian laser modes,” Phys. Rev. A 45, 8185–8189 (1992).
[Crossref]

Amini Sabegh, Z.

Z. Amini Sabegh, R. Amiri, and M. Mahmoudi, “Spatially dependent atom-photon entanglement,” Sci. Rep. 8, 13840 (2018).
[Crossref]

Amiri, R.

Z. Amini Sabegh, R. Amiri, and M. Mahmoudi, “Spatially dependent atom-photon entanglement,” Sci. Rep. 8, 13840 (2018).
[Crossref]

Arnold, A. S.

G. Walker, A. S. Arnold, and S. Franke-Arnold, “Trans-spectral orbital angular momentum transfer via four-wave mixing in Rb vapor,” Phys. Rev. Lett. 108, 243601 (2012).
[Crossref]

Banet, S.

Barnett, S. M.

N. Radwell, T. W. Clark, B. Piccirillo, S. M. Barnett, and S. Franke-Arnold, “Spatially dependent electromagnetically induced transparency,” Phys. Rev. Lett. 114, 123603 (2015).
[Crossref]

Barreiro, S.

Bazhenov, V. Y.

V. Y. Bazhenov, M. V. Vasnetsov, and M. S. Soskin, “Laser beams with screw dislocations in their wavefronts,” JETP Lett. 52, 429–431 (1990).

Beijersbergen, M. W.

M. W. Beijersbergen, R. P. C. Coerwinkel, M. Kristensen, and J. P. Woerdman, “Helical-wavefront laser beams produced with a spiral phaseplate,” Opt. Commun. 112, 321–327 (1994).
[Crossref]

M. W. Beijersbergen, L. Allen, H. van der Veen, and J. P. Woerdman, “Astigmatic laser mode converters and transfer of orbital angular momentum,” Opt. Commun. 96, 123–132 (1993).
[Crossref]

L. Allen, M. W. Beijersbergen, R. J. C. Spreeuw, and J. P. Woerdman, “Orbital angular momentum of light and the transformation of Laguerre-Gaussian laser modes,” Phys. Rev. A 45, 8185–8189 (1992).
[Crossref]

Bortman-Arbiv, D.

D. Bortman-Arbiv, A. D. Wilson-Gordon, and H. Friedmann, “Strong parametric amplification by spatial soliton-induced cloning of transverse beam profiles in an all-optical antiwaveguide,” Phys. Rev. A 63, 031801 (2001).
[Crossref]

Cheng, D. C.

D. C. Cheng, C. P. Liu, and S. Q. Gong, “Optical bistability and multistability via the effect of spontaneously generated coherence in a three-level ladder-type atomic system,” Phys. Lett. A 332, 244–249 (2004).
[Crossref]

Clark, T. W.

N. Radwell, T. W. Clark, B. Piccirillo, S. M. Barnett, and S. Franke-Arnold, “Spatially dependent electromagnetically induced transparency,” Phys. Rev. Lett. 114, 123603 (2015).
[Crossref]

Coerwinkel, R. P. C.

M. W. Beijersbergen, R. P. C. Coerwinkel, M. Kristensen, and J. P. Woerdman, “Helical-wavefront laser beams produced with a spiral phaseplate,” Opt. Commun. 112, 321–327 (1994).
[Crossref]

Courtial, J.

J. Courtial, K. Dholakia, L. Allen, and M. J. Padgett, “Second-harmonic generation and the conservation of orbital angular momentum with high-order Laguerre-Gaussian modes,” Phys. Rev. A 56, 4193–4196 (1997).
[Crossref]

Crégut, O.

D. Persuy, M. Ziegler, O. Crégut, K. Kheng, M. Gallart, B. Hönerlage, and P. Gilliot, “Four-wave mixing in quantum wells using femtosecond pulses with Laguerre-Gauss modes,” Phys. Rev. B 92, 115312 (2015).
[Crossref]

Deyanova, Y.

Dholakia, K.

J. Courtial, K. Dholakia, L. Allen, and M. J. Padgett, “Second-harmonic generation and the conservation of orbital angular momentum with high-order Laguerre-Gaussian modes,” Phys. Rev. A 56, 4193–4196 (1997).
[Crossref]

K. Dholakia, N. B. Simpson, M. J. Padgett, and L. Allen, “Second-harmonic generation and the orbital angular momentum of light,” Phys. Rev. A 54, R3742–R3745 (1996).
[Crossref]

Ding, D. S.

Z. Y. Zhou, Y. Li, D. S. Ding, W. Zhang, S. Shi, B. S. Shi, and G. C. Guo, “Orbital angular momentum photonic quantum interface,” Light Sci. Appl. 5, e16019 (2016).
[Crossref]

Z. Y. Zhou, S. L. Liu, Y. Li, D. S. Ding, W. Zhang, S. Shi, M. X. Dong, B. S. Shi, and G. C. Guo, “Orbital angular momentum-entanglement frequency transducer,” Phys. Rev. Lett. 117, 103601 (2016).
[Crossref]

Y. Li, Z. Y. Zhou, D. S. Ding, and B. S. Shi, “Sum frequency generation with two orbital angular momentum carrying laser beams,” J. Opt. Soc. Am. B 32, 407–411 (2015).
[Crossref]

Z. Y. Zhou, D. S. Ding, Y. K. Jiang, Y. Li, S. Shi, X. S. Wang, and B. S. Shi, “Orbital angular momentum light frequency conversion and interference with quasi-phase matching crystals,” Opt. Express 22, 20298–20310 (2014).
[Crossref]

Dong, M. X.

Z. Y. Zhou, S. L. Liu, Y. Li, D. S. Ding, W. Zhang, S. Shi, M. X. Dong, B. S. Shi, and G. C. Guo, “Orbital angular momentum-entanglement frequency transducer,” Phys. Rev. Lett. 117, 103601 (2016).
[Crossref]

Dowling, J. P.

R. N. Lanning, Z. Xiao, M. Zhang, I. Novikova, E. E. Mikhailov, and J. P. Dowling, “Gaussian-beam-propagation theory for nonlinear optics involving an analytical treatment of orbital-angular-momentum transfer,” Phys. Rev. A 96, 013830 (2017).
[Crossref]

Ficek, Z.

Z. Ficek and S. Swain, Quantum Coherence and Interference: Theory and Experiments (Springer, 2004).

Franke-Arnold, S.

N. Radwell, T. W. Clark, B. Piccirillo, S. M. Barnett, and S. Franke-Arnold, “Spatially dependent electromagnetically induced transparency,” Phys. Rev. Lett. 114, 123603 (2015).
[Crossref]

G. Walker, A. S. Arnold, and S. Franke-Arnold, “Trans-spectral orbital angular momentum transfer via four-wave mixing in Rb vapor,” Phys. Rev. Lett. 108, 243601 (2012).
[Crossref]

Friedmann, H.

D. Bortman-Arbiv, A. D. Wilson-Gordon, and H. Friedmann, “Strong parametric amplification by spatial soliton-induced cloning of transverse beam profiles in an all-optical antiwaveguide,” Phys. Rev. A 63, 031801 (2001).
[Crossref]

Friese, M. E. J.

H. He, M. E. J. Friese, N. R. Heckenberg, and H. Rubinsztein-Dunlop, “Direct observation of transfer of angular momentum to absorptive particles from a laser beam with a phase singularity,” Phys. Rev. Lett. 75, 826–829 (1995).
[Crossref]

Fürhapter, S.

Gallagher, T. F.

D. A. Tate and T. F. Gallagher, “Microwave-optical two-photon excitation of Rydberg states,” Phys. Rev. A 97, 033410 (2018).
[Crossref]

Gallart, M.

D. Persuy, M. Ziegler, O. Crégut, K. Kheng, M. Gallart, B. Hönerlage, and P. Gilliot, “Four-wave mixing in quantum wells using femtosecond pulses with Laguerre-Gauss modes,” Phys. Rev. B 92, 115312 (2015).
[Crossref]

Gao, J. Y.

A. J. Li, X. L. Song, X. G. Wei, L. Wang, and J. Y. Gao, “Effects of spontaneously generated coherence in a microwave-driven four-level atomic system,” Phys. Rev. A 77, 053806 (2008).
[Crossref]

Gilliot, P.

D. Persuy, M. Ziegler, O. Crégut, K. Kheng, M. Gallart, B. Hönerlage, and P. Gilliot, “Four-wave mixing in quantum wells using femtosecond pulses with Laguerre-Gauss modes,” Phys. Rev. B 92, 115312 (2015).
[Crossref]

Gong, S. Q.

D. C. Cheng, C. P. Liu, and S. Q. Gong, “Optical bistability and multistability via the effect of spontaneously generated coherence in a three-level ladder-type atomic system,” Phys. Lett. A 332, 244–249 (2004).
[Crossref]

E. Paspalakis, S. Q. Gong, and P. L. Knight, “Spontaneous emission-induced coherent effects in absorption and dispersion of a V-type three-level atom,” Opt. Commun. 152, 293–298 (1998).
[Crossref]

Guo, G. C.

Z. Y. Zhou, S. L. Liu, Y. Li, D. S. Ding, W. Zhang, S. Shi, M. X. Dong, B. S. Shi, and G. C. Guo, “Orbital angular momentum-entanglement frequency transducer,” Phys. Rev. Lett. 117, 103601 (2016).
[Crossref]

Z. Y. Zhou, Y. Li, D. S. Ding, W. Zhang, S. Shi, B. S. Shi, and G. C. Guo, “Orbital angular momentum photonic quantum interface,” Light Sci. Appl. 5, e16019 (2016).
[Crossref]

Hamedi, H. R.

H. R. Hamedi, J. Ruseckas, and G. Juzeliūnas, “Exchange of optical vortices using an electromagnetically induced transparency based four-wave mixing setup,” Phys. Rev. A 98, 013840 (2018).
[Crossref]

Hassan, S. S.

K. I. Osman, S. S. Hassan, and A. Joshi, “Effect of spontaneously generated coherence on EIT and its refractive properties in four- and five-levels systems,” Eur. Phys. J. D 54, 119–130 (2009).
[Crossref]

He, H.

H. He, M. E. J. Friese, N. R. Heckenberg, and H. Rubinsztein-Dunlop, “Direct observation of transfer of angular momentum to absorptive particles from a laser beam with a phase singularity,” Phys. Rev. Lett. 75, 826–829 (1995).
[Crossref]

Heckenberg, N. R.

H. He, M. E. J. Friese, N. R. Heckenberg, and H. Rubinsztein-Dunlop, “Direct observation of transfer of angular momentum to absorptive particles from a laser beam with a phase singularity,” Phys. Rev. Lett. 75, 826–829 (1995).
[Crossref]

N. R. Heckenberg, R. McDuff, C. P. Smith, and A. G. White, “Generation of optical phase singularities by computer-generated holograms,” Opt. Lett. 17, 221–223 (1992).
[Crossref]

Hönerlage, B.

D. Persuy, M. Ziegler, O. Crégut, K. Kheng, M. Gallart, B. Hönerlage, and P. Gilliot, “Four-wave mixing in quantum wells using femtosecond pulses with Laguerre-Gauss modes,” Phys. Rev. B 92, 115312 (2015).
[Crossref]

Ite, A. Y.

J. Ruseckas, V. Kudriašov, A. Y. Ite, and G. Juzeliūnas, “Transfer of orbital angular momentum of light using two-component slow light,” Phys. Rev. A 87, 053840 (2013).
[Crossref]

Javanainen, J.

J. Javanainen, “Effect of state superpositions created by spontaneous emission on laser-driven transitions,” Europhys. Lett. 17, 407–412 (1992).
[Crossref]

Jesacher, A.

Jiang, W. J.

W. J. Jiang, J. P. Song, H. B. Zheng, C. Wu, B. Y. Yin, and Y. Zhang, “Enhancement of Kerr nonlinearity via spontaneously generated coherence in a four-level N-type atomic system,” Opt. Commun. 282, 101–105 (2009).
[Crossref]

X. A. Yan, L. Q. Wang, B. Y. Yin, W. J. Jiang, H. B. Zheng, J. P. Song, and Y. P. Zhang, “Effect of spontaneously generated coherence on Kerr nonlinearity in a four-level atomic system,” Phys. Lett. A 372, 6456–6460 (2008).
[Crossref]

Jiang, Y. K.

Joshi, A.

K. I. Osman, S. S. Hassan, and A. Joshi, “Effect of spontaneously generated coherence on EIT and its refractive properties in four- and five-levels systems,” Eur. Phys. J. D 54, 119–130 (2009).
[Crossref]

A. Joshi, W. Yang, and M. Xiao, “Effect of spontaneously generated coherence on optical bistability in three-level Λ-type atomic system,” Phys. Lett. A 315, 203–207 (2003).
[Crossref]

Juzeliunas, G.

H. R. Hamedi, J. Ruseckas, and G. Juzeliūnas, “Exchange of optical vortices using an electromagnetically induced transparency based four-wave mixing setup,” Phys. Rev. A 98, 013840 (2018).
[Crossref]

J. Ruseckas, V. Kudriašov, A. Y. Ite, and G. Juzeliūnas, “Transfer of orbital angular momentum of light using two-component slow light,” Phys. Rev. A 87, 053840 (2013).
[Crossref]

J. Ruseckas, A. Mekys, and G. Juzeliūnas, “Slow polaritons with orbital angular momentum in atomic gases,” Phys. Rev. A 83, 023812 (2011).
[Crossref]

Kheng, K.

D. Persuy, M. Ziegler, O. Crégut, K. Kheng, M. Gallart, B. Hönerlage, and P. Gilliot, “Four-wave mixing in quantum wells using femtosecond pulses with Laguerre-Gauss modes,” Phys. Rev. B 92, 115312 (2015).
[Crossref]

Knight, P. L.

E. Paspalakis, N. J. Kylstra, and P. L. Knight, “Transparency induced via decay interference,” Phys. Rev. Lett. 82, 2079–2082 (1999).
[Crossref]

E. Paspalakis, S. Q. Gong, and P. L. Knight, “Spontaneous emission-induced coherent effects in absorption and dispersion of a V-type three-level atom,” Opt. Commun. 152, 293–298 (1998).
[Crossref]

Kristensen, M.

M. W. Beijersbergen, R. P. C. Coerwinkel, M. Kristensen, and J. P. Woerdman, “Helical-wavefront laser beams produced with a spiral phaseplate,” Opt. Commun. 112, 321–327 (1994).
[Crossref]

Kudriašov, V.

J. Ruseckas, V. Kudriašov, A. Y. Ite, and G. Juzeliūnas, “Transfer of orbital angular momentum of light using two-component slow light,” Phys. Rev. A 87, 053840 (2013).
[Crossref]

Kylstra, N. J.

E. Paspalakis, N. J. Kylstra, and P. L. Knight, “Transparency induced via decay interference,” Phys. Rev. Lett. 82, 2079–2082 (1999).
[Crossref]

Lanning, R. N.

R. N. Lanning, Z. Xiao, M. Zhang, I. Novikova, E. E. Mikhailov, and J. P. Dowling, “Gaussian-beam-propagation theory for nonlinear optics involving an analytical treatment of orbital-angular-momentum transfer,” Phys. Rev. A 96, 013830 (2017).
[Crossref]

Li, A. J.

A. J. Li, X. L. Song, X. G. Wei, L. Wang, and J. Y. Gao, “Effects of spontaneously generated coherence in a microwave-driven four-level atomic system,” Phys. Rev. A 77, 053806 (2008).
[Crossref]

Li, Y.

Z. Y. Zhou, S. L. Liu, Y. Li, D. S. Ding, W. Zhang, S. Shi, M. X. Dong, B. S. Shi, and G. C. Guo, “Orbital angular momentum-entanglement frequency transducer,” Phys. Rev. Lett. 117, 103601 (2016).
[Crossref]

Z. Y. Zhou, Y. Li, D. S. Ding, W. Zhang, S. Shi, B. S. Shi, and G. C. Guo, “Orbital angular momentum photonic quantum interface,” Light Sci. Appl. 5, e16019 (2016).
[Crossref]

Y. Li, Z. Y. Zhou, D. S. Ding, and B. S. Shi, “Sum frequency generation with two orbital angular momentum carrying laser beams,” J. Opt. Soc. Am. B 32, 407–411 (2015).
[Crossref]

Z. Y. Zhou, D. S. Ding, Y. K. Jiang, Y. Li, S. Shi, X. S. Wang, and B. S. Shi, “Orbital angular momentum light frequency conversion and interference with quasi-phase matching crystals,” Opt. Express 22, 20298–20310 (2014).
[Crossref]

Liu, C. P.

D. C. Cheng, C. P. Liu, and S. Q. Gong, “Optical bistability and multistability via the effect of spontaneously generated coherence in a three-level ladder-type atomic system,” Phys. Lett. A 332, 244–249 (2004).
[Crossref]

Liu, S. L.

Z. Y. Zhou, S. L. Liu, Y. Li, D. S. Ding, W. Zhang, S. Shi, M. X. Dong, B. S. Shi, and G. C. Guo, “Orbital angular momentum-entanglement frequency transducer,” Phys. Rev. Lett. 117, 103601 (2016).
[Crossref]

Mahmoudi, M.

Z. A. Sabegh, M. A. Maleki, and M. Mahmoudi, “Microwave-induced orbital angular momentum transfer,” Sci. Rep. 9, 3519 (2019).
[Crossref]

Z. Amini Sabegh, R. Amiri, and M. Mahmoudi, “Spatially dependent atom-photon entanglement,” Sci. Rep. 8, 13840 (2018).
[Crossref]

S. M. Mousavi, L. Safari, M. Mahmoudi, and M. Sahrai, “Effect of quantum interference on the optical properties of a three-level V-type atomic system beyond the two-photon resonance condition,” J. Phys. B 43, 165501 (2010).
[Crossref]

Maleki, M. A.

Z. A. Sabegh, M. A. Maleki, and M. Mahmoudi, “Microwave-induced orbital angular momentum transfer,” Sci. Rep. 9, 3519 (2019).
[Crossref]

Maurer, C.

McDuff, R.

Mekys, A.

J. Ruseckas, A. Mekys, and G. Juzeliūnas, “Slow polaritons with orbital angular momentum in atomic gases,” Phys. Rev. A 83, 023812 (2011).
[Crossref]

Menon, S.

S. Menon and G. S. Agarwal, “Gain components in the Autler-Townes doublet from quantum interferences in decay channels,” Phys. Rev. A 61, 013807 (1999).
[Crossref]

S. Menon and G. S. Agarwal, “Effects of spontaneously generated coherence on the pump-probe response of a Λ system,” Phys. Rev. A 57, 4014–4018 (1998).
[Crossref]

Mikhailov, E. E.

R. N. Lanning, Z. Xiao, M. Zhang, I. Novikova, E. E. Mikhailov, and J. P. Dowling, “Gaussian-beam-propagation theory for nonlinear optics involving an analytical treatment of orbital-angular-momentum transfer,” Phys. Rev. A 96, 013830 (2017).
[Crossref]

Mousavi, S. M.

S. M. Mousavi, L. Safari, M. Mahmoudi, and M. Sahrai, “Effect of quantum interference on the optical properties of a three-level V-type atomic system beyond the two-photon resonance condition,” J. Phys. B 43, 165501 (2010).
[Crossref]

Novikova, I.

R. N. Lanning, Z. Xiao, M. Zhang, I. Novikova, E. E. Mikhailov, and J. P. Dowling, “Gaussian-beam-propagation theory for nonlinear optics involving an analytical treatment of orbital-angular-momentum transfer,” Phys. Rev. A 96, 013830 (2017).
[Crossref]

Osman, K. I.

K. I. Osman, S. S. Hassan, and A. Joshi, “Effect of spontaneously generated coherence on EIT and its refractive properties in four- and five-levels systems,” Eur. Phys. J. D 54, 119–130 (2009).
[Crossref]

Padgett, M. J.

J. Courtial, K. Dholakia, L. Allen, and M. J. Padgett, “Second-harmonic generation and the conservation of orbital angular momentum with high-order Laguerre-Gaussian modes,” Phys. Rev. A 56, 4193–4196 (1997).
[Crossref]

K. Dholakia, N. B. Simpson, M. J. Padgett, and L. Allen, “Second-harmonic generation and the orbital angular momentum of light,” Phys. Rev. A 54, R3742–R3745 (1996).
[Crossref]

Paspalakis, E.

E. Paspalakis, N. J. Kylstra, and P. L. Knight, “Transparency induced via decay interference,” Phys. Rev. Lett. 82, 2079–2082 (1999).
[Crossref]

E. Paspalakis, S. Q. Gong, and P. L. Knight, “Spontaneous emission-induced coherent effects in absorption and dispersion of a V-type three-level atom,” Opt. Commun. 152, 293–298 (1998).
[Crossref]

Persuy, D.

D. Persuy, M. Ziegler, O. Crégut, K. Kheng, M. Gallart, B. Hönerlage, and P. Gilliot, “Four-wave mixing in quantum wells using femtosecond pulses with Laguerre-Gauss modes,” Phys. Rev. B 92, 115312 (2015).
[Crossref]

Piccirillo, B.

N. Radwell, T. W. Clark, B. Piccirillo, S. M. Barnett, and S. Franke-Arnold, “Spatially dependent electromagnetically induced transparency,” Phys. Rev. Lett. 114, 123603 (2015).
[Crossref]

Radwell, N.

N. Radwell, T. W. Clark, B. Piccirillo, S. M. Barnett, and S. Franke-Arnold, “Spatially dependent electromagnetically induced transparency,” Phys. Rev. Lett. 114, 123603 (2015).
[Crossref]

Ritsch-Marte, M.

Rubinsztein-Dunlop, H.

H. He, M. E. J. Friese, N. R. Heckenberg, and H. Rubinsztein-Dunlop, “Direct observation of transfer of angular momentum to absorptive particles from a laser beam with a phase singularity,” Phys. Rev. Lett. 75, 826–829 (1995).
[Crossref]

Ruseckas, J.

H. R. Hamedi, J. Ruseckas, and G. Juzeliūnas, “Exchange of optical vortices using an electromagnetically induced transparency based four-wave mixing setup,” Phys. Rev. A 98, 013840 (2018).
[Crossref]

J. Ruseckas, V. Kudriašov, A. Y. Ite, and G. Juzeliūnas, “Transfer of orbital angular momentum of light using two-component slow light,” Phys. Rev. A 87, 053840 (2013).
[Crossref]

J. Ruseckas, A. Mekys, and G. Juzeliūnas, “Slow polaritons with orbital angular momentum in atomic gases,” Phys. Rev. A 83, 023812 (2011).
[Crossref]

Sabegh, Z. A.

Z. A. Sabegh, M. A. Maleki, and M. Mahmoudi, “Microwave-induced orbital angular momentum transfer,” Sci. Rep. 9, 3519 (2019).
[Crossref]

Safari, L.

S. M. Mousavi, L. Safari, M. Mahmoudi, and M. Sahrai, “Effect of quantum interference on the optical properties of a three-level V-type atomic system beyond the two-photon resonance condition,” J. Phys. B 43, 165501 (2010).
[Crossref]

Sahrai, M.

S. M. Mousavi, L. Safari, M. Mahmoudi, and M. Sahrai, “Effect of quantum interference on the optical properties of a three-level V-type atomic system beyond the two-photon resonance condition,” J. Phys. B 43, 165501 (2010).
[Crossref]

Schwaighofer, A.

Shi, B. S.

Z. Y. Zhou, S. L. Liu, Y. Li, D. S. Ding, W. Zhang, S. Shi, M. X. Dong, B. S. Shi, and G. C. Guo, “Orbital angular momentum-entanglement frequency transducer,” Phys. Rev. Lett. 117, 103601 (2016).
[Crossref]

Z. Y. Zhou, Y. Li, D. S. Ding, W. Zhang, S. Shi, B. S. Shi, and G. C. Guo, “Orbital angular momentum photonic quantum interface,” Light Sci. Appl. 5, e16019 (2016).
[Crossref]

Y. Li, Z. Y. Zhou, D. S. Ding, and B. S. Shi, “Sum frequency generation with two orbital angular momentum carrying laser beams,” J. Opt. Soc. Am. B 32, 407–411 (2015).
[Crossref]

Z. Y. Zhou, D. S. Ding, Y. K. Jiang, Y. Li, S. Shi, X. S. Wang, and B. S. Shi, “Orbital angular momentum light frequency conversion and interference with quasi-phase matching crystals,” Opt. Express 22, 20298–20310 (2014).
[Crossref]

Shi, S.

Z. Y. Zhou, Y. Li, D. S. Ding, W. Zhang, S. Shi, B. S. Shi, and G. C. Guo, “Orbital angular momentum photonic quantum interface,” Light Sci. Appl. 5, e16019 (2016).
[Crossref]

Z. Y. Zhou, S. L. Liu, Y. Li, D. S. Ding, W. Zhang, S. Shi, M. X. Dong, B. S. Shi, and G. C. Guo, “Orbital angular momentum-entanglement frequency transducer,” Phys. Rev. Lett. 117, 103601 (2016).
[Crossref]

Z. Y. Zhou, D. S. Ding, Y. K. Jiang, Y. Li, S. Shi, X. S. Wang, and B. S. Shi, “Orbital angular momentum light frequency conversion and interference with quasi-phase matching crystals,” Opt. Express 22, 20298–20310 (2014).
[Crossref]

Simpson, N. B.

K. Dholakia, N. B. Simpson, M. J. Padgett, and L. Allen, “Second-harmonic generation and the orbital angular momentum of light,” Phys. Rev. A 54, R3742–R3745 (1996).
[Crossref]

Smith, C. P.

Song, J. P.

W. J. Jiang, J. P. Song, H. B. Zheng, C. Wu, B. Y. Yin, and Y. Zhang, “Enhancement of Kerr nonlinearity via spontaneously generated coherence in a four-level N-type atomic system,” Opt. Commun. 282, 101–105 (2009).
[Crossref]

X. A. Yan, L. Q. Wang, B. Y. Yin, W. J. Jiang, H. B. Zheng, J. P. Song, and Y. P. Zhang, “Effect of spontaneously generated coherence on Kerr nonlinearity in a four-level atomic system,” Phys. Lett. A 372, 6456–6460 (2008).
[Crossref]

Song, X. L.

A. J. Li, X. L. Song, X. G. Wei, L. Wang, and J. Y. Gao, “Effects of spontaneously generated coherence in a microwave-driven four-level atomic system,” Phys. Rev. A 77, 053806 (2008).
[Crossref]

Soskin, M. S.

V. Y. Bazhenov, M. V. Vasnetsov, and M. S. Soskin, “Laser beams with screw dislocations in their wavefronts,” JETP Lett. 52, 429–431 (1990).

Spreeuw, R. J. C.

L. Allen, M. W. Beijersbergen, R. J. C. Spreeuw, and J. P. Woerdman, “Orbital angular momentum of light and the transformation of Laguerre-Gaussian laser modes,” Phys. Rev. A 45, 8185–8189 (1992).
[Crossref]

Swain, S.

Z. Ficek and S. Swain, Quantum Coherence and Interference: Theory and Experiments (Springer, 2004).

Tabosa, J. W. R.

Tate, D. A.

D. A. Tate and T. F. Gallagher, “Microwave-optical two-photon excitation of Rydberg states,” Phys. Rev. A 97, 033410 (2018).
[Crossref]

Torner, L.

Torres, J. P.

van der Veen, H.

M. W. Beijersbergen, L. Allen, H. van der Veen, and J. P. Woerdman, “Astigmatic laser mode converters and transfer of orbital angular momentum,” Opt. Commun. 96, 123–132 (1993).
[Crossref]

Vasnetsov, M. V.

V. Y. Bazhenov, M. V. Vasnetsov, and M. S. Soskin, “Laser beams with screw dislocations in their wavefronts,” JETP Lett. 52, 429–431 (1990).

Walker, G.

G. Walker, A. S. Arnold, and S. Franke-Arnold, “Trans-spectral orbital angular momentum transfer via four-wave mixing in Rb vapor,” Phys. Rev. Lett. 108, 243601 (2012).
[Crossref]

Wang, L.

A. J. Li, X. L. Song, X. G. Wei, L. Wang, and J. Y. Gao, “Effects of spontaneously generated coherence in a microwave-driven four-level atomic system,” Phys. Rev. A 77, 053806 (2008).
[Crossref]

Wang, L. Q.

X. A. Yan, L. Q. Wang, B. Y. Yin, W. J. Jiang, H. B. Zheng, J. P. Song, and Y. P. Zhang, “Effect of spontaneously generated coherence on Kerr nonlinearity in a four-level atomic system,” Phys. Lett. A 372, 6456–6460 (2008).
[Crossref]

Wang, X. S.

Wei, X. G.

A. J. Li, X. L. Song, X. G. Wei, L. Wang, and J. Y. Gao, “Effects of spontaneously generated coherence in a microwave-driven four-level atomic system,” Phys. Rev. A 77, 053806 (2008).
[Crossref]

White, A. G.

Wilson-Gordon, A. D.

D. Bortman-Arbiv, A. D. Wilson-Gordon, and H. Friedmann, “Strong parametric amplification by spatial soliton-induced cloning of transverse beam profiles in an all-optical antiwaveguide,” Phys. Rev. A 63, 031801 (2001).
[Crossref]

Woerdman, J. P.

M. W. Beijersbergen, R. P. C. Coerwinkel, M. Kristensen, and J. P. Woerdman, “Helical-wavefront laser beams produced with a spiral phaseplate,” Opt. Commun. 112, 321–327 (1994).
[Crossref]

M. W. Beijersbergen, L. Allen, H. van der Veen, and J. P. Woerdman, “Astigmatic laser mode converters and transfer of orbital angular momentum,” Opt. Commun. 96, 123–132 (1993).
[Crossref]

L. Allen, M. W. Beijersbergen, R. J. C. Spreeuw, and J. P. Woerdman, “Orbital angular momentum of light and the transformation of Laguerre-Gaussian laser modes,” Phys. Rev. A 45, 8185–8189 (1992).
[Crossref]

Wu, C.

W. J. Jiang, J. P. Song, H. B. Zheng, C. Wu, B. Y. Yin, and Y. Zhang, “Enhancement of Kerr nonlinearity via spontaneously generated coherence in a four-level N-type atomic system,” Opt. Commun. 282, 101–105 (2009).
[Crossref]

Xiao, M.

A. Joshi, W. Yang, and M. Xiao, “Effect of spontaneously generated coherence on optical bistability in three-level Λ-type atomic system,” Phys. Lett. A 315, 203–207 (2003).
[Crossref]

Xiao, Z.

R. N. Lanning, Z. Xiao, M. Zhang, I. Novikova, E. E. Mikhailov, and J. P. Dowling, “Gaussian-beam-propagation theory for nonlinear optics involving an analytical treatment of orbital-angular-momentum transfer,” Phys. Rev. A 96, 013830 (2017).
[Crossref]

Yan, X. A.

X. A. Yan, L. Q. Wang, B. Y. Yin, W. J. Jiang, H. B. Zheng, J. P. Song, and Y. P. Zhang, “Effect of spontaneously generated coherence on Kerr nonlinearity in a four-level atomic system,” Phys. Lett. A 372, 6456–6460 (2008).
[Crossref]

Yang, W.

A. Joshi, W. Yang, and M. Xiao, “Effect of spontaneously generated coherence on optical bistability in three-level Λ-type atomic system,” Phys. Lett. A 315, 203–207 (2003).
[Crossref]

Yin, B. Y.

W. J. Jiang, J. P. Song, H. B. Zheng, C. Wu, B. Y. Yin, and Y. Zhang, “Enhancement of Kerr nonlinearity via spontaneously generated coherence in a four-level N-type atomic system,” Opt. Commun. 282, 101–105 (2009).
[Crossref]

X. A. Yan, L. Q. Wang, B. Y. Yin, W. J. Jiang, H. B. Zheng, J. P. Song, and Y. P. Zhang, “Effect of spontaneously generated coherence on Kerr nonlinearity in a four-level atomic system,” Phys. Lett. A 372, 6456–6460 (2008).
[Crossref]

Zhang, M.

R. N. Lanning, Z. Xiao, M. Zhang, I. Novikova, E. E. Mikhailov, and J. P. Dowling, “Gaussian-beam-propagation theory for nonlinear optics involving an analytical treatment of orbital-angular-momentum transfer,” Phys. Rev. A 96, 013830 (2017).
[Crossref]

Zhang, W.

Z. Y. Zhou, Y. Li, D. S. Ding, W. Zhang, S. Shi, B. S. Shi, and G. C. Guo, “Orbital angular momentum photonic quantum interface,” Light Sci. Appl. 5, e16019 (2016).
[Crossref]

Z. Y. Zhou, S. L. Liu, Y. Li, D. S. Ding, W. Zhang, S. Shi, M. X. Dong, B. S. Shi, and G. C. Guo, “Orbital angular momentum-entanglement frequency transducer,” Phys. Rev. Lett. 117, 103601 (2016).
[Crossref]

Zhang, Y.

W. J. Jiang, J. P. Song, H. B. Zheng, C. Wu, B. Y. Yin, and Y. Zhang, “Enhancement of Kerr nonlinearity via spontaneously generated coherence in a four-level N-type atomic system,” Opt. Commun. 282, 101–105 (2009).
[Crossref]

Zhang, Y. P.

X. A. Yan, L. Q. Wang, B. Y. Yin, W. J. Jiang, H. B. Zheng, J. P. Song, and Y. P. Zhang, “Effect of spontaneously generated coherence on Kerr nonlinearity in a four-level atomic system,” Phys. Lett. A 372, 6456–6460 (2008).
[Crossref]

Zheng, H. B.

W. J. Jiang, J. P. Song, H. B. Zheng, C. Wu, B. Y. Yin, and Y. Zhang, “Enhancement of Kerr nonlinearity via spontaneously generated coherence in a four-level N-type atomic system,” Opt. Commun. 282, 101–105 (2009).
[Crossref]

X. A. Yan, L. Q. Wang, B. Y. Yin, W. J. Jiang, H. B. Zheng, J. P. Song, and Y. P. Zhang, “Effect of spontaneously generated coherence on Kerr nonlinearity in a four-level atomic system,” Phys. Lett. A 372, 6456–6460 (2008).
[Crossref]

Zhou, Z. Y.

Z. Y. Zhou, S. L. Liu, Y. Li, D. S. Ding, W. Zhang, S. Shi, M. X. Dong, B. S. Shi, and G. C. Guo, “Orbital angular momentum-entanglement frequency transducer,” Phys. Rev. Lett. 117, 103601 (2016).
[Crossref]

Z. Y. Zhou, Y. Li, D. S. Ding, W. Zhang, S. Shi, B. S. Shi, and G. C. Guo, “Orbital angular momentum photonic quantum interface,” Light Sci. Appl. 5, e16019 (2016).
[Crossref]

Y. Li, Z. Y. Zhou, D. S. Ding, and B. S. Shi, “Sum frequency generation with two orbital angular momentum carrying laser beams,” J. Opt. Soc. Am. B 32, 407–411 (2015).
[Crossref]

Z. Y. Zhou, D. S. Ding, Y. K. Jiang, Y. Li, S. Shi, X. S. Wang, and B. S. Shi, “Orbital angular momentum light frequency conversion and interference with quasi-phase matching crystals,” Opt. Express 22, 20298–20310 (2014).
[Crossref]

Ziegler, M.

D. Persuy, M. Ziegler, O. Crégut, K. Kheng, M. Gallart, B. Hönerlage, and P. Gilliot, “Four-wave mixing in quantum wells using femtosecond pulses with Laguerre-Gauss modes,” Phys. Rev. B 92, 115312 (2015).
[Crossref]

Eur. Phys. J. D (1)

K. I. Osman, S. S. Hassan, and A. Joshi, “Effect of spontaneously generated coherence on EIT and its refractive properties in four- and five-levels systems,” Eur. Phys. J. D 54, 119–130 (2009).
[Crossref]

Europhys. Lett. (1)

J. Javanainen, “Effect of state superpositions created by spontaneous emission on laser-driven transitions,” Europhys. Lett. 17, 407–412 (1992).
[Crossref]

J. Opt. Soc. Am. B (1)

J. Phys. B (1)

S. M. Mousavi, L. Safari, M. Mahmoudi, and M. Sahrai, “Effect of quantum interference on the optical properties of a three-level V-type atomic system beyond the two-photon resonance condition,” J. Phys. B 43, 165501 (2010).
[Crossref]

JETP Lett. (1)

V. Y. Bazhenov, M. V. Vasnetsov, and M. S. Soskin, “Laser beams with screw dislocations in their wavefronts,” JETP Lett. 52, 429–431 (1990).

Light Sci. Appl. (1)

Z. Y. Zhou, Y. Li, D. S. Ding, W. Zhang, S. Shi, B. S. Shi, and G. C. Guo, “Orbital angular momentum photonic quantum interface,” Light Sci. Appl. 5, e16019 (2016).
[Crossref]

Opt. Commun. (4)

W. J. Jiang, J. P. Song, H. B. Zheng, C. Wu, B. Y. Yin, and Y. Zhang, “Enhancement of Kerr nonlinearity via spontaneously generated coherence in a four-level N-type atomic system,” Opt. Commun. 282, 101–105 (2009).
[Crossref]

M. W. Beijersbergen, L. Allen, H. van der Veen, and J. P. Woerdman, “Astigmatic laser mode converters and transfer of orbital angular momentum,” Opt. Commun. 96, 123–132 (1993).
[Crossref]

M. W. Beijersbergen, R. P. C. Coerwinkel, M. Kristensen, and J. P. Woerdman, “Helical-wavefront laser beams produced with a spiral phaseplate,” Opt. Commun. 112, 321–327 (1994).
[Crossref]

E. Paspalakis, S. Q. Gong, and P. L. Knight, “Spontaneous emission-induced coherent effects in absorption and dispersion of a V-type three-level atom,” Opt. Commun. 152, 293–298 (1998).
[Crossref]

Opt. Express (2)

Opt. Lett. (2)

Phys. Lett. A (3)

D. C. Cheng, C. P. Liu, and S. Q. Gong, “Optical bistability and multistability via the effect of spontaneously generated coherence in a three-level ladder-type atomic system,” Phys. Lett. A 332, 244–249 (2004).
[Crossref]

A. Joshi, W. Yang, and M. Xiao, “Effect of spontaneously generated coherence on optical bistability in three-level Λ-type atomic system,” Phys. Lett. A 315, 203–207 (2003).
[Crossref]

X. A. Yan, L. Q. Wang, B. Y. Yin, W. J. Jiang, H. B. Zheng, J. P. Song, and Y. P. Zhang, “Effect of spontaneously generated coherence on Kerr nonlinearity in a four-level atomic system,” Phys. Lett. A 372, 6456–6460 (2008).
[Crossref]

Phys. Rev. A (12)

R. N. Lanning, Z. Xiao, M. Zhang, I. Novikova, E. E. Mikhailov, and J. P. Dowling, “Gaussian-beam-propagation theory for nonlinear optics involving an analytical treatment of orbital-angular-momentum transfer,” Phys. Rev. A 96, 013830 (2017).
[Crossref]

K. Dholakia, N. B. Simpson, M. J. Padgett, and L. Allen, “Second-harmonic generation and the orbital angular momentum of light,” Phys. Rev. A 54, R3742–R3745 (1996).
[Crossref]

J. Courtial, K. Dholakia, L. Allen, and M. J. Padgett, “Second-harmonic generation and the conservation of orbital angular momentum with high-order Laguerre-Gaussian modes,” Phys. Rev. A 56, 4193–4196 (1997).
[Crossref]

H. R. Hamedi, J. Ruseckas, and G. Juzeliūnas, “Exchange of optical vortices using an electromagnetically induced transparency based four-wave mixing setup,” Phys. Rev. A 98, 013840 (2018).
[Crossref]

D. Bortman-Arbiv, A. D. Wilson-Gordon, and H. Friedmann, “Strong parametric amplification by spatial soliton-induced cloning of transverse beam profiles in an all-optical antiwaveguide,” Phys. Rev. A 63, 031801 (2001).
[Crossref]

J. Ruseckas, A. Mekys, and G. Juzeliūnas, “Slow polaritons with orbital angular momentum in atomic gases,” Phys. Rev. A 83, 023812 (2011).
[Crossref]

J. Ruseckas, V. Kudriašov, A. Y. Ite, and G. Juzeliūnas, “Transfer of orbital angular momentum of light using two-component slow light,” Phys. Rev. A 87, 053840 (2013).
[Crossref]

A. J. Li, X. L. Song, X. G. Wei, L. Wang, and J. Y. Gao, “Effects of spontaneously generated coherence in a microwave-driven four-level atomic system,” Phys. Rev. A 77, 053806 (2008).
[Crossref]

S. Menon and G. S. Agarwal, “Gain components in the Autler-Townes doublet from quantum interferences in decay channels,” Phys. Rev. A 61, 013807 (1999).
[Crossref]

S. Menon and G. S. Agarwal, “Effects of spontaneously generated coherence on the pump-probe response of a Λ system,” Phys. Rev. A 57, 4014–4018 (1998).
[Crossref]

L. Allen, M. W. Beijersbergen, R. J. C. Spreeuw, and J. P. Woerdman, “Orbital angular momentum of light and the transformation of Laguerre-Gaussian laser modes,” Phys. Rev. A 45, 8185–8189 (1992).
[Crossref]

D. A. Tate and T. F. Gallagher, “Microwave-optical two-photon excitation of Rydberg states,” Phys. Rev. A 97, 033410 (2018).
[Crossref]

Phys. Rev. B (1)

D. Persuy, M. Ziegler, O. Crégut, K. Kheng, M. Gallart, B. Hönerlage, and P. Gilliot, “Four-wave mixing in quantum wells using femtosecond pulses with Laguerre-Gauss modes,” Phys. Rev. B 92, 115312 (2015).
[Crossref]

Phys. Rev. Lett. (5)

N. Radwell, T. W. Clark, B. Piccirillo, S. M. Barnett, and S. Franke-Arnold, “Spatially dependent electromagnetically induced transparency,” Phys. Rev. Lett. 114, 123603 (2015).
[Crossref]

G. Walker, A. S. Arnold, and S. Franke-Arnold, “Trans-spectral orbital angular momentum transfer via four-wave mixing in Rb vapor,” Phys. Rev. Lett. 108, 243601 (2012).
[Crossref]

Z. Y. Zhou, S. L. Liu, Y. Li, D. S. Ding, W. Zhang, S. Shi, M. X. Dong, B. S. Shi, and G. C. Guo, “Orbital angular momentum-entanglement frequency transducer,” Phys. Rev. Lett. 117, 103601 (2016).
[Crossref]

H. He, M. E. J. Friese, N. R. Heckenberg, and H. Rubinsztein-Dunlop, “Direct observation of transfer of angular momentum to absorptive particles from a laser beam with a phase singularity,” Phys. Rev. Lett. 75, 826–829 (1995).
[Crossref]

E. Paspalakis, N. J. Kylstra, and P. L. Knight, “Transparency induced via decay interference,” Phys. Rev. Lett. 82, 2079–2082 (1999).
[Crossref]

Sci. Rep. (2)

Z. Amini Sabegh, R. Amiri, and M. Mahmoudi, “Spatially dependent atom-photon entanglement,” Sci. Rep. 8, 13840 (2018).
[Crossref]

Z. A. Sabegh, M. A. Maleki, and M. Mahmoudi, “Microwave-induced orbital angular momentum transfer,” Sci. Rep. 9, 3519 (2019).
[Crossref]

Other (2)

Z. Ficek and S. Swain, Quantum Coherence and Interference: Theory and Experiments (Springer, 2004).

D. A. Steck, “Sodium D line data,” 2001, http://steck.us/alkalidata/sodiumnumbers.pdf .

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1.
Fig. 1. Closed-loop three-level $ V $ -type atomic system schematic, which can be established in Rb Rydberg vapor sample interacting with two weak applied fields, $ {\Omega _R} $ and $ {\Omega _L} $ , and a strong planar microwave field, $ {\Omega _m} $ . The spontaneous emission rates are defined by $ {\gamma _R} $ , $ {\gamma _L} $ , and  $ {\gamma _m} $ .
Fig. 2.
Fig. 2. Spatially dependent behavior of the imaginary part of $ {\rho_{31}} $ (left column), intensity (middle column), and phase (right column) profiles of the output left field versus $ x $ and $ y $ for the Gaussian and different modes of the right LG field, i.e., $ l = - 2, - 1,...,2 $ , at $ z = L $ . Parameters used are $ {\gamma _R} = {\gamma _L} = \gamma $ , $ {\gamma _m} = 2\gamma $ , $ {\Omega _m} = 4\gamma $ , $ {\Omega _{0R}} = 0.1\gamma $ , $ {w_G} = {w_{\rm LG}} = 0.5\,\,{\rm mm}$ , $ \alpha = 100 $ , and $ {\Delta _R} = {\Delta _L} = {\Delta _m} = 0 $ .
Fig. 3.
Fig. 3. Spatially dependent behavior of the velocity average of the imaginary part of $ {\rho_{31}} $ versus $ x $ and $ y $ for the first mode of the right LG field, $ l = 1 $ , and four different values of the Doppler width, i.e., $ kD = 0 $ , $ \gamma $ , $ 10\gamma $ , and $ 50\gamma $ (room temperature). Other parameters are the same as in Fig. 2.
Fig. 4.
Fig. 4. Three-level $ V $ -type atomic system schematic, which can be established in a sodium vapor sample with the SGC interacting with two weak applied fields, $ {\Omega _R} $ and $ {\Omega _L} $ . The spontaneous emission rates from two upper energy levels to the ground state are defined by $ {\gamma _R} $ and  $ {\gamma _L} $ .
Fig. 5.
Fig. 5. Spatially dependent behavior of the imaginary part of $ {\rho_{31}} $ (left column), intensity (middle column), and phase (right column) profiles of the output left field as a function of $ x $ and $ y $ for the Gaussian and different modes of the right LG field, i.e., $ l = - 2, - 1,...,2 $ , at $ z = L $ . Parameters used are $ \eta = 0.5 $ , $ {\gamma _R} = {\gamma _L} = \gamma $ , $ {\Omega _{0R}} = 0.1\gamma $ , $ {w_G} = {w_{\rm LG}} = 0.5\,\,{\rm mm}$ , $ \alpha = 100 $ , and $ {\Delta _L} = {\Delta _R} = 0 $ .
Fig. 6.
Fig. 6. Spatially dependent behavior of the imaginary part of $ {\rho_{31}} $ (left column), intensity (middle column), and phase (right column) profiles of the output left field versus $ x $ and $ y $ for the Gaussian and different modes of the right LG field, i.e., $ l = - 2, - 1,...,2 $ . The SGC strength is considered to be $ \eta = 0.99 $ , and the other parameters are the same as in Fig. 5.

Equations (9)

Equations on this page are rendered with MathJax. Learn more.

Ω R ( r , φ ) = Ω 0 R 1 | l | ! ( 2 r w L G ) | l | e r 2 / w L G 2 e i l φ .
ρ ˙ 22 = 2 γ R ρ 22 + 2 γ m ρ 33 + i Ω R ρ 12 i Ω R ρ 21 + i Ω m ρ 32 i Ω m ρ 23 , ρ ˙ 33 = 2 ( γ L + γ m ) ρ 33 + i Ω L ρ 13 i Ω L ρ 31 i Ω m ρ 32 + i Ω m ρ 23 , ρ ˙ 12 = ( i Δ R γ R ) ρ 12 i Ω R ( ρ 22 ρ 11 ) + i Ω L ρ 32 i Ω m ρ 13 , ρ ˙ 13 = [ i Δ L ( γ L + γ m ) ] ρ 13 i Ω L ( ρ 33 ρ 11 ) + i Ω R ρ 23 i Ω m ρ 12 , ρ ˙ 23 = [ i Δ m ( γ R + γ L + γ m ) ] ρ 23 i Ω L ρ 21 + i Ω R ρ 13 + i Ω m ( ρ 22 ρ 33 ) , ρ ˙ 11 = ( ρ ˙ 22 + ρ ˙ 33 ) ,
ρ 21 = Ω L Ω m 3 i γ Ω R 3 γ 2 + Ω m 2 , ρ 31 = i γ Ω L Ω m Ω R 3 γ 2 + Ω m 2 .
Ω R ( z ) z = i α γ 2 L ρ 21 , Ω L ( z ) z = i α γ 2 L ρ 31 ,
Ω L ( z ) = i 2 γ 2 Ω m 2 [ exp ( z α γ ( 2 γ + γ 2 Ω m 2 ) 2 L ( 3 γ 2 + Ω m 2 ) ) exp ( z α γ ( 2 γ + γ 2 Ω m 2 ) 2 L ( 3 γ 2 + Ω m 2 ) ) ] Ω m Ω R ( r , φ ) .
f ( v ) = 1 2 π D exp [ v 2 / D 2 ] ,
ρ ˙ 22 = 2 γ R ρ 22 + i Ω R ρ 12 i Ω R ρ 21 η γ R γ L ( ρ 32 + ρ 23 ) , ρ ˙ 33 = 2 γ L ρ 33 + i Ω L ρ 13 i Ω L ρ 31 η γ R γ L ( ρ 32 + ρ 23 ) , ρ ˙ 12 = ( i Δ R γ R ) ρ 12 i Ω R ( ρ 22 ρ 11 ) + i Ω L ρ 32 η γ R γ L ρ 13 , ρ ˙ 13 = ( i Δ L γ L ) ρ 13 i Ω L ( ρ 33 ρ 11 ) + i Ω R ρ 23 η γ R γ L ρ 12 , ρ ˙ 23 = [ i ( Δ L Δ R ) ( γ R + γ L ) ] ρ 23 i Ω L ρ 12 + i Ω R ρ 13 η γ R γ L ( ρ 22 + ρ 33 ) , ρ ˙ 11 = ( ρ ˙ 22 + ρ ˙ 33 ) .
ρ 21 = i η ( η 2 1 ) 2 Ω L + ( η 2 1 ) 2 Ω R 3 η 2 ( 1 η 2 ) 1 , ρ 31 = i η ( η 2 1 ) 2 Ω R + ( η 2 1 ) 2 Ω L 3 η 2 ( 1 η 2 ) 1 .
Ω L ( z ) = 1 2 [ exp ( z α ( η 1 ) ( 1 2 η 2 + η 4 ) 2 L ( 1 3 η 2 + 3 η 4 ) ) exp ( z α ( η 1 ) ( 1 2 η 2 + η 4 ) 2 L ( 1 3 η 2 + 3 η 4 ) ) ] Ω R ( r , φ ) .

Metrics