Abstract

Metal-based perfect absorbers that use metals such as aluminum (Al) can have their optical properties changed with temperature, subsequently affecting the device’s performance. The changes with temperature can critically limit the applications of absorbers at high powers or high temperatures. In this paper, we show a thermally stable broadband absorber based on an ultrathin layer of refractory ceramic, tungsten boride (WB). We experimentally analyze and compare the performance of the absorber with an aluminum (Al) based absorber. The multilayer perfect absorber has absorption higher than 85% in the wavelength range between 500 and 1600 nm over a large range of incident angles (up to 60°). We show that a WB absorber has significantly better temperature stability when compared with its Al counterpart, achieving stable operation up to temperatures as high as 270°C. These absorbers may find applications in solar thermo-photovoltaic energy conversion.

© 2019 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Multilayer tungsten-alumina-based broadband light absorbers for high-temperature applications

Manohar Chirumamilla, Alexander S. Roberts, Fei Ding, Deyong Wang, Peter Kjær Kristensen, Sergey I. Bozhevolnyi, and Kjeld Pedersen
Opt. Mater. Express 6(8) 2704-2714 (2016)

Tungsten based anisotropic metamaterial as an ultra-broadband absorber

Yinyue Lin, Yanxia Cui, Fei Ding, Kin Hung Fung, Ting Ji, Dongdong Li, and Yuying Hao
Opt. Mater. Express 7(2) 606-617 (2017)

Tungsten band edge absorber/emitter based on a monolayer of ceramic microspheres

P. N. Dyachenko, J. J. do Rosário, E. W. Leib, A. Yu. Petrov, M. Störmer, H. Weller, T. Vossmeyer, G. A. Schneider, and M. Eich
Opt. Express 23(19) A1236-A1244 (2015)

References

  • View by:
  • |
  • |
  • |

  1. J.-J. Greffet, R. Carminati, K. Joulain, J.-P. Mulet, S. Mainguy, and Y. Chen, “Coherent emission of light by thermal sources,” Nature 416, 61–64 (2002).
    [Crossref]
  2. W. Li and J. Valentine, “Metamaterial perfect absorber based hot electron photodetection,” Nano Lett. 14, 3510–3514 (2014).
    [Crossref]
  3. D. Kraemer, B. Poudel, H.-P. Feng, J. C. Caylor, B. Yu, X. Yan, Y. Ma, X. Wang, D. Wang, A. Muto, K. McEnaney, M. Chiesa, Z. Ren, and G. Chen, “High-performance flat-panel solar thermoelectric generators with high thermal concentration,” Nat. Mater. 10, 532–538 (2011).
    [Crossref]
  4. P. Zhu and L. Jay Guo, “High performance broadband absorber in the visible band by engineered dispersion and geometry of a metal-dielectric-metal stack,” Appl. Phys. Lett. 101, 241116 (2012).
    [Crossref]
  5. R. Walter, A. Tittl, A. Berrier, F. Sterl, T. Weiss, and H. Giessen, “Large-area low-cost tunable plasmonic perfect absorber in the near infrared by colloidal etching lithography,” Adv. Opt. Mater. 3, 398–403 (2015).
    [Crossref]
  6. V. Steenhoff, M. Theuring, M. Vehse, K. von Maydell, and C. Agert, “Ultrathin resonant-cavity-enhanced solar cells with amorphous germanium absorbers,” Adv. Opt. Mater. 3, 182–186 (2015).
    [Crossref]
  7. C. M. Watts, X. Liu, and W. J. Padilla, “Metamaterial electromagnetic wave absorbers,” Adv. Mater. 24, OP98–OP120 (2012).
    [Crossref]
  8. Y. Cui, Y. He, Y. Jin, F. Ding, L. Yang, Y. Ye, S. Zhong, Y. Lin, and S. He, “Plasmonic and metamaterial structures as electromagnetic absorbers,” Laser Photon. Rev. 8, 495–520 (2014).
    [Crossref]
  9. T. Søndergaard, S. M. Novikov, T. Holmgaard, R. L. Eriksen, J. Beermann, Z. Han, K. Pedersen, and S. I. Bozhevolnyi, “Plasmonic black gold by adiabatic nanofocusing and absorption of light in ultra-sharp convex grooves,” Nat. Commun. 3, 969 (2012).
    [Crossref]
  10. Y. Cui, K. H. Fung, J. Xu, H. Ma, Y. Jin, S. He, and N. X. Fang, “Ultrabroadband light absorption by a sawtooth anisotropic metamaterial slab,” Nano Lett. 12, 1443–1447 (2012).
    [Crossref]
  11. S. He, F. Ding, L. Mo, and F. Bao, “Light absorber with an ultra-broad flat band based on multi-sized slow-wave hyperbolic metamaterial thin-films,” Prog. Electromagn. Res. 147, 69–79 (2014).
    [Crossref]
  12. F. Ding, L. Mo, J. Zhu, and S. He, “Lithography-free, broadband, omnidirectional, and polarization-insensitive thin optical absorber,” Appl. Phys. Lett. 106, 061108 (2015).
    [Crossref]
  13. H. Deng, Z. Li, L. Stan, D. Rosenmann, D. Czaplewski, J. Gao, and X. Yang, “Broadband perfect absorber based on one ultrathin layer of refractory metal,” Opt. Lett. 40, 2592–2595 (2015).
    [Crossref]
  14. Z. Li, E. Palacios, S. Butun, H. Kocer, and K. Aydin, “Omnidirectional, broadband light absorption using large-area, ultrathin lossy metallic film coatings,” Sci. Rep. 5, 15137 (2015).
    [Crossref]
  15. M. Zhang, M. Y. Efremov, F. Schiettekatte, E. Olson, A. Kwan, S. Lai, T. Wisleder, J. Greene, and L. Allen, “Size-dependent melting point depression of nanostructures: nanocalorimetric measurements,” Phys. Rev. B 62, 10548–10557 (2000).
    [Crossref]
  16. A. Narayanaswamy and G. Chen, “Surface modes for near field thermophotovoltaics,” Appl. Phys. Lett. 82, 3544–3546 (2003).
    [Crossref]
  17. P. Nagpal, S. E. Han, A. Stein, and D. J. Norris, “Efficient low-temperature thermophotovoltaic emitters from metallic photonic crystals,” Nano Lett. 8, 3238–3243 (2008).
    [Crossref]
  18. H. A. Atwater and A. Polman, “Plasmonics for improved photovoltaic devices,” Nat. Mater. 9, 205–213 (2010).
    [Crossref]
  19. G. V. Naik, V. M. Shalaev, and A. Boltasseva, “Alternative plasmonic materials: beyond gold and silver,” Adv. Mater. 25, 3264–3294 (2013).
    [Crossref]
  20. E. Rephaeli and S. Fan, “Absorber and emitter for solar thermo-photovoltaic systems to achieve efficiency exceeding the Shockley-Queisser limit,” Opt. Express 17, 15145–15159 (2009).
    [Crossref]
  21. V. Rinnerbauer, A. Lenert, D. M. Bierman, Y. X. Yeng, W. R. Chan, R. D. Geil, J. J. Senkevich, J. D. Joannopoulos, E. N. Wang, M. Soljačič, and I. Celanovic, “Metallic photonic crystal absorber-emitter for efficient spectral control in high-temperature solar thermophotovoltaics,” Adv. Energy Mater. 4, 1400334 (2014).
    [Crossref]
  22. N. G. Szwacki, “The structure and hardness of the highest boride of tungsten, a borophene-based compound,” Sci. Rep. 7, 4082 (2017).
    [Crossref]
  23. R. Mohammadi, A. T. Lech, M. Xie, B. E. Weaver, M. T. Yeung, S. H. Tolbert, and R. B. Kaner, “Tungsten tetraboride, an inexpensive superhard material,” Proc. Natl. Acad. Sci. USA 108, 10958–10962 (2011).
    [Crossref]
  24. M. Usta, I. Ozbek, M. Ipek, C. Bindal, and A. Ucisik, “The characterization of borided pure tungsten,” Surf. Coat. Technol. 194, 330–334 (2005).
    [Crossref]
  25. X. Huang, C. Lu, C. Rong, Z. Hu, and M. Liu, “Multiband ultrathin polarization-insensitive terahertz perfect absorbers with complementary metamaterial and resonator based on high-order electric and magnetic resonances,” IEEE Photon. J. 10, 4600811 (2018).
    [Crossref]
  26. G. Liu, J. Chen, P. Pan, and Z. Liu, “Hybrid metal-semiconductor meta-surface based photo-electronic perfect absorber,” IEEE J. Sel. Top. Quantum Electron. 25, 4600507 (2018).
    [Crossref]
  27. A. B. Evlyukhin, K. V. Nerkararyan, and S. I. Bozhevolnyi, “Core-shell particles as efficient broadband absorbers in infrared optical range,” Opt. Express 27, 17474–17481 (2019).
    [Crossref]
  28. K. V. Sreekanth, M. ElKabbash, R. Medwal, J. Zhang, T. Letsou, G. Strangi, M. Hinczewski, R. S. Rawat, C. Guo, and R. Singh, “Generalized Brewster-angle effect in thin-film optical absorbers and its application for graphene hydrogen sensing,” ACS Photon. 6, 1610–1617 (2019).
    [Crossref]
  29. C. Hu, H. Zhang, and G. Liu, “Analysis of unidirectional broadband absorption in one-dimensional superconductor photonic crystal with an asymmetric multiple-layered structure,” Appl. Opt. 58, 2890–2897 (2019).
    [Crossref]
  30. Y. Zhao, Q. Huang, H. Cai, X. Lin, H. He, T. Ma, and Y. Lu, “Dual band and tunable perfect absorber based on dual gratings-coupled graphene-dielectric multilayer structures,” Opt. Express 27, 5217–5229 (2019).
    [Crossref]
  31. J. Luo and Y. Lai, “Near-perfect absorption by photonic crystals with a broadband and omnidirectional impedance-matching property,” Opt. Express 27, 15800–15811 (2019).
    [Crossref]
  32. W. R. Sweeney, C. W. Hsu, S. Rotter, and A. D. Stone, “Perfectly absorbing exceptional points and chiral absorbers,” Phys. Rev. Lett. 122, 093901 (2019).
    [Crossref]
  33. B. Huttner, “Optical properties of polyvalent metals in the solid and liquid state: aluminum,” J. Phys. Condens. Matter 6, 2459–2474 (1994).
    [Crossref]

2019 (6)

2018 (2)

X. Huang, C. Lu, C. Rong, Z. Hu, and M. Liu, “Multiband ultrathin polarization-insensitive terahertz perfect absorbers with complementary metamaterial and resonator based on high-order electric and magnetic resonances,” IEEE Photon. J. 10, 4600811 (2018).
[Crossref]

G. Liu, J. Chen, P. Pan, and Z. Liu, “Hybrid metal-semiconductor meta-surface based photo-electronic perfect absorber,” IEEE J. Sel. Top. Quantum Electron. 25, 4600507 (2018).
[Crossref]

2017 (1)

N. G. Szwacki, “The structure and hardness of the highest boride of tungsten, a borophene-based compound,” Sci. Rep. 7, 4082 (2017).
[Crossref]

2015 (5)

H. Deng, Z. Li, L. Stan, D. Rosenmann, D. Czaplewski, J. Gao, and X. Yang, “Broadband perfect absorber based on one ultrathin layer of refractory metal,” Opt. Lett. 40, 2592–2595 (2015).
[Crossref]

R. Walter, A. Tittl, A. Berrier, F. Sterl, T. Weiss, and H. Giessen, “Large-area low-cost tunable plasmonic perfect absorber in the near infrared by colloidal etching lithography,” Adv. Opt. Mater. 3, 398–403 (2015).
[Crossref]

V. Steenhoff, M. Theuring, M. Vehse, K. von Maydell, and C. Agert, “Ultrathin resonant-cavity-enhanced solar cells with amorphous germanium absorbers,” Adv. Opt. Mater. 3, 182–186 (2015).
[Crossref]

F. Ding, L. Mo, J. Zhu, and S. He, “Lithography-free, broadband, omnidirectional, and polarization-insensitive thin optical absorber,” Appl. Phys. Lett. 106, 061108 (2015).
[Crossref]

Z. Li, E. Palacios, S. Butun, H. Kocer, and K. Aydin, “Omnidirectional, broadband light absorption using large-area, ultrathin lossy metallic film coatings,” Sci. Rep. 5, 15137 (2015).
[Crossref]

2014 (4)

S. He, F. Ding, L. Mo, and F. Bao, “Light absorber with an ultra-broad flat band based on multi-sized slow-wave hyperbolic metamaterial thin-films,” Prog. Electromagn. Res. 147, 69–79 (2014).
[Crossref]

V. Rinnerbauer, A. Lenert, D. M. Bierman, Y. X. Yeng, W. R. Chan, R. D. Geil, J. J. Senkevich, J. D. Joannopoulos, E. N. Wang, M. Soljačič, and I. Celanovic, “Metallic photonic crystal absorber-emitter for efficient spectral control in high-temperature solar thermophotovoltaics,” Adv. Energy Mater. 4, 1400334 (2014).
[Crossref]

Y. Cui, Y. He, Y. Jin, F. Ding, L. Yang, Y. Ye, S. Zhong, Y. Lin, and S. He, “Plasmonic and metamaterial structures as electromagnetic absorbers,” Laser Photon. Rev. 8, 495–520 (2014).
[Crossref]

W. Li and J. Valentine, “Metamaterial perfect absorber based hot electron photodetection,” Nano Lett. 14, 3510–3514 (2014).
[Crossref]

2013 (1)

G. V. Naik, V. M. Shalaev, and A. Boltasseva, “Alternative plasmonic materials: beyond gold and silver,” Adv. Mater. 25, 3264–3294 (2013).
[Crossref]

2012 (4)

P. Zhu and L. Jay Guo, “High performance broadband absorber in the visible band by engineered dispersion and geometry of a metal-dielectric-metal stack,” Appl. Phys. Lett. 101, 241116 (2012).
[Crossref]

T. Søndergaard, S. M. Novikov, T. Holmgaard, R. L. Eriksen, J. Beermann, Z. Han, K. Pedersen, and S. I. Bozhevolnyi, “Plasmonic black gold by adiabatic nanofocusing and absorption of light in ultra-sharp convex grooves,” Nat. Commun. 3, 969 (2012).
[Crossref]

Y. Cui, K. H. Fung, J. Xu, H. Ma, Y. Jin, S. He, and N. X. Fang, “Ultrabroadband light absorption by a sawtooth anisotropic metamaterial slab,” Nano Lett. 12, 1443–1447 (2012).
[Crossref]

C. M. Watts, X. Liu, and W. J. Padilla, “Metamaterial electromagnetic wave absorbers,” Adv. Mater. 24, OP98–OP120 (2012).
[Crossref]

2011 (2)

D. Kraemer, B. Poudel, H.-P. Feng, J. C. Caylor, B. Yu, X. Yan, Y. Ma, X. Wang, D. Wang, A. Muto, K. McEnaney, M. Chiesa, Z. Ren, and G. Chen, “High-performance flat-panel solar thermoelectric generators with high thermal concentration,” Nat. Mater. 10, 532–538 (2011).
[Crossref]

R. Mohammadi, A. T. Lech, M. Xie, B. E. Weaver, M. T. Yeung, S. H. Tolbert, and R. B. Kaner, “Tungsten tetraboride, an inexpensive superhard material,” Proc. Natl. Acad. Sci. USA 108, 10958–10962 (2011).
[Crossref]

2010 (1)

H. A. Atwater and A. Polman, “Plasmonics for improved photovoltaic devices,” Nat. Mater. 9, 205–213 (2010).
[Crossref]

2009 (1)

2008 (1)

P. Nagpal, S. E. Han, A. Stein, and D. J. Norris, “Efficient low-temperature thermophotovoltaic emitters from metallic photonic crystals,” Nano Lett. 8, 3238–3243 (2008).
[Crossref]

2005 (1)

M. Usta, I. Ozbek, M. Ipek, C. Bindal, and A. Ucisik, “The characterization of borided pure tungsten,” Surf. Coat. Technol. 194, 330–334 (2005).
[Crossref]

2003 (1)

A. Narayanaswamy and G. Chen, “Surface modes for near field thermophotovoltaics,” Appl. Phys. Lett. 82, 3544–3546 (2003).
[Crossref]

2002 (1)

J.-J. Greffet, R. Carminati, K. Joulain, J.-P. Mulet, S. Mainguy, and Y. Chen, “Coherent emission of light by thermal sources,” Nature 416, 61–64 (2002).
[Crossref]

2000 (1)

M. Zhang, M. Y. Efremov, F. Schiettekatte, E. Olson, A. Kwan, S. Lai, T. Wisleder, J. Greene, and L. Allen, “Size-dependent melting point depression of nanostructures: nanocalorimetric measurements,” Phys. Rev. B 62, 10548–10557 (2000).
[Crossref]

1994 (1)

B. Huttner, “Optical properties of polyvalent metals in the solid and liquid state: aluminum,” J. Phys. Condens. Matter 6, 2459–2474 (1994).
[Crossref]

Agert, C.

V. Steenhoff, M. Theuring, M. Vehse, K. von Maydell, and C. Agert, “Ultrathin resonant-cavity-enhanced solar cells with amorphous germanium absorbers,” Adv. Opt. Mater. 3, 182–186 (2015).
[Crossref]

Allen, L.

M. Zhang, M. Y. Efremov, F. Schiettekatte, E. Olson, A. Kwan, S. Lai, T. Wisleder, J. Greene, and L. Allen, “Size-dependent melting point depression of nanostructures: nanocalorimetric measurements,” Phys. Rev. B 62, 10548–10557 (2000).
[Crossref]

Atwater, H. A.

H. A. Atwater and A. Polman, “Plasmonics for improved photovoltaic devices,” Nat. Mater. 9, 205–213 (2010).
[Crossref]

Aydin, K.

Z. Li, E. Palacios, S. Butun, H. Kocer, and K. Aydin, “Omnidirectional, broadband light absorption using large-area, ultrathin lossy metallic film coatings,” Sci. Rep. 5, 15137 (2015).
[Crossref]

Bao, F.

S. He, F. Ding, L. Mo, and F. Bao, “Light absorber with an ultra-broad flat band based on multi-sized slow-wave hyperbolic metamaterial thin-films,” Prog. Electromagn. Res. 147, 69–79 (2014).
[Crossref]

Beermann, J.

T. Søndergaard, S. M. Novikov, T. Holmgaard, R. L. Eriksen, J. Beermann, Z. Han, K. Pedersen, and S. I. Bozhevolnyi, “Plasmonic black gold by adiabatic nanofocusing and absorption of light in ultra-sharp convex grooves,” Nat. Commun. 3, 969 (2012).
[Crossref]

Berrier, A.

R. Walter, A. Tittl, A. Berrier, F. Sterl, T. Weiss, and H. Giessen, “Large-area low-cost tunable plasmonic perfect absorber in the near infrared by colloidal etching lithography,” Adv. Opt. Mater. 3, 398–403 (2015).
[Crossref]

Bierman, D. M.

V. Rinnerbauer, A. Lenert, D. M. Bierman, Y. X. Yeng, W. R. Chan, R. D. Geil, J. J. Senkevich, J. D. Joannopoulos, E. N. Wang, M. Soljačič, and I. Celanovic, “Metallic photonic crystal absorber-emitter for efficient spectral control in high-temperature solar thermophotovoltaics,” Adv. Energy Mater. 4, 1400334 (2014).
[Crossref]

Bindal, C.

M. Usta, I. Ozbek, M. Ipek, C. Bindal, and A. Ucisik, “The characterization of borided pure tungsten,” Surf. Coat. Technol. 194, 330–334 (2005).
[Crossref]

Boltasseva, A.

G. V. Naik, V. M. Shalaev, and A. Boltasseva, “Alternative plasmonic materials: beyond gold and silver,” Adv. Mater. 25, 3264–3294 (2013).
[Crossref]

Bozhevolnyi, S. I.

A. B. Evlyukhin, K. V. Nerkararyan, and S. I. Bozhevolnyi, “Core-shell particles as efficient broadband absorbers in infrared optical range,” Opt. Express 27, 17474–17481 (2019).
[Crossref]

T. Søndergaard, S. M. Novikov, T. Holmgaard, R. L. Eriksen, J. Beermann, Z. Han, K. Pedersen, and S. I. Bozhevolnyi, “Plasmonic black gold by adiabatic nanofocusing and absorption of light in ultra-sharp convex grooves,” Nat. Commun. 3, 969 (2012).
[Crossref]

Butun, S.

Z. Li, E. Palacios, S. Butun, H. Kocer, and K. Aydin, “Omnidirectional, broadband light absorption using large-area, ultrathin lossy metallic film coatings,” Sci. Rep. 5, 15137 (2015).
[Crossref]

Cai, H.

Carminati, R.

J.-J. Greffet, R. Carminati, K. Joulain, J.-P. Mulet, S. Mainguy, and Y. Chen, “Coherent emission of light by thermal sources,” Nature 416, 61–64 (2002).
[Crossref]

Caylor, J. C.

D. Kraemer, B. Poudel, H.-P. Feng, J. C. Caylor, B. Yu, X. Yan, Y. Ma, X. Wang, D. Wang, A. Muto, K. McEnaney, M. Chiesa, Z. Ren, and G. Chen, “High-performance flat-panel solar thermoelectric generators with high thermal concentration,” Nat. Mater. 10, 532–538 (2011).
[Crossref]

Celanovic, I.

V. Rinnerbauer, A. Lenert, D. M. Bierman, Y. X. Yeng, W. R. Chan, R. D. Geil, J. J. Senkevich, J. D. Joannopoulos, E. N. Wang, M. Soljačič, and I. Celanovic, “Metallic photonic crystal absorber-emitter for efficient spectral control in high-temperature solar thermophotovoltaics,” Adv. Energy Mater. 4, 1400334 (2014).
[Crossref]

Chan, W. R.

V. Rinnerbauer, A. Lenert, D. M. Bierman, Y. X. Yeng, W. R. Chan, R. D. Geil, J. J. Senkevich, J. D. Joannopoulos, E. N. Wang, M. Soljačič, and I. Celanovic, “Metallic photonic crystal absorber-emitter for efficient spectral control in high-temperature solar thermophotovoltaics,” Adv. Energy Mater. 4, 1400334 (2014).
[Crossref]

Chen, G.

D. Kraemer, B. Poudel, H.-P. Feng, J. C. Caylor, B. Yu, X. Yan, Y. Ma, X. Wang, D. Wang, A. Muto, K. McEnaney, M. Chiesa, Z. Ren, and G. Chen, “High-performance flat-panel solar thermoelectric generators with high thermal concentration,” Nat. Mater. 10, 532–538 (2011).
[Crossref]

A. Narayanaswamy and G. Chen, “Surface modes for near field thermophotovoltaics,” Appl. Phys. Lett. 82, 3544–3546 (2003).
[Crossref]

Chen, J.

G. Liu, J. Chen, P. Pan, and Z. Liu, “Hybrid metal-semiconductor meta-surface based photo-electronic perfect absorber,” IEEE J. Sel. Top. Quantum Electron. 25, 4600507 (2018).
[Crossref]

Chen, Y.

J.-J. Greffet, R. Carminati, K. Joulain, J.-P. Mulet, S. Mainguy, and Y. Chen, “Coherent emission of light by thermal sources,” Nature 416, 61–64 (2002).
[Crossref]

Chiesa, M.

D. Kraemer, B. Poudel, H.-P. Feng, J. C. Caylor, B. Yu, X. Yan, Y. Ma, X. Wang, D. Wang, A. Muto, K. McEnaney, M. Chiesa, Z. Ren, and G. Chen, “High-performance flat-panel solar thermoelectric generators with high thermal concentration,” Nat. Mater. 10, 532–538 (2011).
[Crossref]

Cui, Y.

Y. Cui, Y. He, Y. Jin, F. Ding, L. Yang, Y. Ye, S. Zhong, Y. Lin, and S. He, “Plasmonic and metamaterial structures as electromagnetic absorbers,” Laser Photon. Rev. 8, 495–520 (2014).
[Crossref]

Y. Cui, K. H. Fung, J. Xu, H. Ma, Y. Jin, S. He, and N. X. Fang, “Ultrabroadband light absorption by a sawtooth anisotropic metamaterial slab,” Nano Lett. 12, 1443–1447 (2012).
[Crossref]

Czaplewski, D.

Deng, H.

Ding, F.

F. Ding, L. Mo, J. Zhu, and S. He, “Lithography-free, broadband, omnidirectional, and polarization-insensitive thin optical absorber,” Appl. Phys. Lett. 106, 061108 (2015).
[Crossref]

S. He, F. Ding, L. Mo, and F. Bao, “Light absorber with an ultra-broad flat band based on multi-sized slow-wave hyperbolic metamaterial thin-films,” Prog. Electromagn. Res. 147, 69–79 (2014).
[Crossref]

Y. Cui, Y. He, Y. Jin, F. Ding, L. Yang, Y. Ye, S. Zhong, Y. Lin, and S. He, “Plasmonic and metamaterial structures as electromagnetic absorbers,” Laser Photon. Rev. 8, 495–520 (2014).
[Crossref]

Efremov, M. Y.

M. Zhang, M. Y. Efremov, F. Schiettekatte, E. Olson, A. Kwan, S. Lai, T. Wisleder, J. Greene, and L. Allen, “Size-dependent melting point depression of nanostructures: nanocalorimetric measurements,” Phys. Rev. B 62, 10548–10557 (2000).
[Crossref]

ElKabbash, M.

K. V. Sreekanth, M. ElKabbash, R. Medwal, J. Zhang, T. Letsou, G. Strangi, M. Hinczewski, R. S. Rawat, C. Guo, and R. Singh, “Generalized Brewster-angle effect in thin-film optical absorbers and its application for graphene hydrogen sensing,” ACS Photon. 6, 1610–1617 (2019).
[Crossref]

Eriksen, R. L.

T. Søndergaard, S. M. Novikov, T. Holmgaard, R. L. Eriksen, J. Beermann, Z. Han, K. Pedersen, and S. I. Bozhevolnyi, “Plasmonic black gold by adiabatic nanofocusing and absorption of light in ultra-sharp convex grooves,” Nat. Commun. 3, 969 (2012).
[Crossref]

Evlyukhin, A. B.

Fan, S.

Fang, N. X.

Y. Cui, K. H. Fung, J. Xu, H. Ma, Y. Jin, S. He, and N. X. Fang, “Ultrabroadband light absorption by a sawtooth anisotropic metamaterial slab,” Nano Lett. 12, 1443–1447 (2012).
[Crossref]

Feng, H.-P.

D. Kraemer, B. Poudel, H.-P. Feng, J. C. Caylor, B. Yu, X. Yan, Y. Ma, X. Wang, D. Wang, A. Muto, K. McEnaney, M. Chiesa, Z. Ren, and G. Chen, “High-performance flat-panel solar thermoelectric generators with high thermal concentration,” Nat. Mater. 10, 532–538 (2011).
[Crossref]

Fung, K. H.

Y. Cui, K. H. Fung, J. Xu, H. Ma, Y. Jin, S. He, and N. X. Fang, “Ultrabroadband light absorption by a sawtooth anisotropic metamaterial slab,” Nano Lett. 12, 1443–1447 (2012).
[Crossref]

Gao, J.

Geil, R. D.

V. Rinnerbauer, A. Lenert, D. M. Bierman, Y. X. Yeng, W. R. Chan, R. D. Geil, J. J. Senkevich, J. D. Joannopoulos, E. N. Wang, M. Soljačič, and I. Celanovic, “Metallic photonic crystal absorber-emitter for efficient spectral control in high-temperature solar thermophotovoltaics,” Adv. Energy Mater. 4, 1400334 (2014).
[Crossref]

Giessen, H.

R. Walter, A. Tittl, A. Berrier, F. Sterl, T. Weiss, and H. Giessen, “Large-area low-cost tunable plasmonic perfect absorber in the near infrared by colloidal etching lithography,” Adv. Opt. Mater. 3, 398–403 (2015).
[Crossref]

Greene, J.

M. Zhang, M. Y. Efremov, F. Schiettekatte, E. Olson, A. Kwan, S. Lai, T. Wisleder, J. Greene, and L. Allen, “Size-dependent melting point depression of nanostructures: nanocalorimetric measurements,” Phys. Rev. B 62, 10548–10557 (2000).
[Crossref]

Greffet, J.-J.

J.-J. Greffet, R. Carminati, K. Joulain, J.-P. Mulet, S. Mainguy, and Y. Chen, “Coherent emission of light by thermal sources,” Nature 416, 61–64 (2002).
[Crossref]

Guo, C.

K. V. Sreekanth, M. ElKabbash, R. Medwal, J. Zhang, T. Letsou, G. Strangi, M. Hinczewski, R. S. Rawat, C. Guo, and R. Singh, “Generalized Brewster-angle effect in thin-film optical absorbers and its application for graphene hydrogen sensing,” ACS Photon. 6, 1610–1617 (2019).
[Crossref]

Han, S. E.

P. Nagpal, S. E. Han, A. Stein, and D. J. Norris, “Efficient low-temperature thermophotovoltaic emitters from metallic photonic crystals,” Nano Lett. 8, 3238–3243 (2008).
[Crossref]

Han, Z.

T. Søndergaard, S. M. Novikov, T. Holmgaard, R. L. Eriksen, J. Beermann, Z. Han, K. Pedersen, and S. I. Bozhevolnyi, “Plasmonic black gold by adiabatic nanofocusing and absorption of light in ultra-sharp convex grooves,” Nat. Commun. 3, 969 (2012).
[Crossref]

He, H.

He, S.

F. Ding, L. Mo, J. Zhu, and S. He, “Lithography-free, broadband, omnidirectional, and polarization-insensitive thin optical absorber,” Appl. Phys. Lett. 106, 061108 (2015).
[Crossref]

S. He, F. Ding, L. Mo, and F. Bao, “Light absorber with an ultra-broad flat band based on multi-sized slow-wave hyperbolic metamaterial thin-films,” Prog. Electromagn. Res. 147, 69–79 (2014).
[Crossref]

Y. Cui, Y. He, Y. Jin, F. Ding, L. Yang, Y. Ye, S. Zhong, Y. Lin, and S. He, “Plasmonic and metamaterial structures as electromagnetic absorbers,” Laser Photon. Rev. 8, 495–520 (2014).
[Crossref]

Y. Cui, K. H. Fung, J. Xu, H. Ma, Y. Jin, S. He, and N. X. Fang, “Ultrabroadband light absorption by a sawtooth anisotropic metamaterial slab,” Nano Lett. 12, 1443–1447 (2012).
[Crossref]

He, Y.

Y. Cui, Y. He, Y. Jin, F. Ding, L. Yang, Y. Ye, S. Zhong, Y. Lin, and S. He, “Plasmonic and metamaterial structures as electromagnetic absorbers,” Laser Photon. Rev. 8, 495–520 (2014).
[Crossref]

Hinczewski, M.

K. V. Sreekanth, M. ElKabbash, R. Medwal, J. Zhang, T. Letsou, G. Strangi, M. Hinczewski, R. S. Rawat, C. Guo, and R. Singh, “Generalized Brewster-angle effect in thin-film optical absorbers and its application for graphene hydrogen sensing,” ACS Photon. 6, 1610–1617 (2019).
[Crossref]

Holmgaard, T.

T. Søndergaard, S. M. Novikov, T. Holmgaard, R. L. Eriksen, J. Beermann, Z. Han, K. Pedersen, and S. I. Bozhevolnyi, “Plasmonic black gold by adiabatic nanofocusing and absorption of light in ultra-sharp convex grooves,” Nat. Commun. 3, 969 (2012).
[Crossref]

Hsu, C. W.

W. R. Sweeney, C. W. Hsu, S. Rotter, and A. D. Stone, “Perfectly absorbing exceptional points and chiral absorbers,” Phys. Rev. Lett. 122, 093901 (2019).
[Crossref]

Hu, C.

Hu, Z.

X. Huang, C. Lu, C. Rong, Z. Hu, and M. Liu, “Multiband ultrathin polarization-insensitive terahertz perfect absorbers with complementary metamaterial and resonator based on high-order electric and magnetic resonances,” IEEE Photon. J. 10, 4600811 (2018).
[Crossref]

Huang, Q.

Huang, X.

X. Huang, C. Lu, C. Rong, Z. Hu, and M. Liu, “Multiband ultrathin polarization-insensitive terahertz perfect absorbers with complementary metamaterial and resonator based on high-order electric and magnetic resonances,” IEEE Photon. J. 10, 4600811 (2018).
[Crossref]

Huttner, B.

B. Huttner, “Optical properties of polyvalent metals in the solid and liquid state: aluminum,” J. Phys. Condens. Matter 6, 2459–2474 (1994).
[Crossref]

Ipek, M.

M. Usta, I. Ozbek, M. Ipek, C. Bindal, and A. Ucisik, “The characterization of borided pure tungsten,” Surf. Coat. Technol. 194, 330–334 (2005).
[Crossref]

Jay Guo, L.

P. Zhu and L. Jay Guo, “High performance broadband absorber in the visible band by engineered dispersion and geometry of a metal-dielectric-metal stack,” Appl. Phys. Lett. 101, 241116 (2012).
[Crossref]

Jin, Y.

Y. Cui, Y. He, Y. Jin, F. Ding, L. Yang, Y. Ye, S. Zhong, Y. Lin, and S. He, “Plasmonic and metamaterial structures as electromagnetic absorbers,” Laser Photon. Rev. 8, 495–520 (2014).
[Crossref]

Y. Cui, K. H. Fung, J. Xu, H. Ma, Y. Jin, S. He, and N. X. Fang, “Ultrabroadband light absorption by a sawtooth anisotropic metamaterial slab,” Nano Lett. 12, 1443–1447 (2012).
[Crossref]

Joannopoulos, J. D.

V. Rinnerbauer, A. Lenert, D. M. Bierman, Y. X. Yeng, W. R. Chan, R. D. Geil, J. J. Senkevich, J. D. Joannopoulos, E. N. Wang, M. Soljačič, and I. Celanovic, “Metallic photonic crystal absorber-emitter for efficient spectral control in high-temperature solar thermophotovoltaics,” Adv. Energy Mater. 4, 1400334 (2014).
[Crossref]

Joulain, K.

J.-J. Greffet, R. Carminati, K. Joulain, J.-P. Mulet, S. Mainguy, and Y. Chen, “Coherent emission of light by thermal sources,” Nature 416, 61–64 (2002).
[Crossref]

Kaner, R. B.

R. Mohammadi, A. T. Lech, M. Xie, B. E. Weaver, M. T. Yeung, S. H. Tolbert, and R. B. Kaner, “Tungsten tetraboride, an inexpensive superhard material,” Proc. Natl. Acad. Sci. USA 108, 10958–10962 (2011).
[Crossref]

Kocer, H.

Z. Li, E. Palacios, S. Butun, H. Kocer, and K. Aydin, “Omnidirectional, broadband light absorption using large-area, ultrathin lossy metallic film coatings,” Sci. Rep. 5, 15137 (2015).
[Crossref]

Kraemer, D.

D. Kraemer, B. Poudel, H.-P. Feng, J. C. Caylor, B. Yu, X. Yan, Y. Ma, X. Wang, D. Wang, A. Muto, K. McEnaney, M. Chiesa, Z. Ren, and G. Chen, “High-performance flat-panel solar thermoelectric generators with high thermal concentration,” Nat. Mater. 10, 532–538 (2011).
[Crossref]

Kwan, A.

M. Zhang, M. Y. Efremov, F. Schiettekatte, E. Olson, A. Kwan, S. Lai, T. Wisleder, J. Greene, and L. Allen, “Size-dependent melting point depression of nanostructures: nanocalorimetric measurements,” Phys. Rev. B 62, 10548–10557 (2000).
[Crossref]

Lai, S.

M. Zhang, M. Y. Efremov, F. Schiettekatte, E. Olson, A. Kwan, S. Lai, T. Wisleder, J. Greene, and L. Allen, “Size-dependent melting point depression of nanostructures: nanocalorimetric measurements,” Phys. Rev. B 62, 10548–10557 (2000).
[Crossref]

Lai, Y.

Lech, A. T.

R. Mohammadi, A. T. Lech, M. Xie, B. E. Weaver, M. T. Yeung, S. H. Tolbert, and R. B. Kaner, “Tungsten tetraboride, an inexpensive superhard material,” Proc. Natl. Acad. Sci. USA 108, 10958–10962 (2011).
[Crossref]

Lenert, A.

V. Rinnerbauer, A. Lenert, D. M. Bierman, Y. X. Yeng, W. R. Chan, R. D. Geil, J. J. Senkevich, J. D. Joannopoulos, E. N. Wang, M. Soljačič, and I. Celanovic, “Metallic photonic crystal absorber-emitter for efficient spectral control in high-temperature solar thermophotovoltaics,” Adv. Energy Mater. 4, 1400334 (2014).
[Crossref]

Letsou, T.

K. V. Sreekanth, M. ElKabbash, R. Medwal, J. Zhang, T. Letsou, G. Strangi, M. Hinczewski, R. S. Rawat, C. Guo, and R. Singh, “Generalized Brewster-angle effect in thin-film optical absorbers and its application for graphene hydrogen sensing,” ACS Photon. 6, 1610–1617 (2019).
[Crossref]

Li, W.

W. Li and J. Valentine, “Metamaterial perfect absorber based hot electron photodetection,” Nano Lett. 14, 3510–3514 (2014).
[Crossref]

Li, Z.

Z. Li, E. Palacios, S. Butun, H. Kocer, and K. Aydin, “Omnidirectional, broadband light absorption using large-area, ultrathin lossy metallic film coatings,” Sci. Rep. 5, 15137 (2015).
[Crossref]

H. Deng, Z. Li, L. Stan, D. Rosenmann, D. Czaplewski, J. Gao, and X. Yang, “Broadband perfect absorber based on one ultrathin layer of refractory metal,” Opt. Lett. 40, 2592–2595 (2015).
[Crossref]

Lin, X.

Lin, Y.

Y. Cui, Y. He, Y. Jin, F. Ding, L. Yang, Y. Ye, S. Zhong, Y. Lin, and S. He, “Plasmonic and metamaterial structures as electromagnetic absorbers,” Laser Photon. Rev. 8, 495–520 (2014).
[Crossref]

Liu, G.

C. Hu, H. Zhang, and G. Liu, “Analysis of unidirectional broadband absorption in one-dimensional superconductor photonic crystal with an asymmetric multiple-layered structure,” Appl. Opt. 58, 2890–2897 (2019).
[Crossref]

G. Liu, J. Chen, P. Pan, and Z. Liu, “Hybrid metal-semiconductor meta-surface based photo-electronic perfect absorber,” IEEE J. Sel. Top. Quantum Electron. 25, 4600507 (2018).
[Crossref]

Liu, M.

X. Huang, C. Lu, C. Rong, Z. Hu, and M. Liu, “Multiband ultrathin polarization-insensitive terahertz perfect absorbers with complementary metamaterial and resonator based on high-order electric and magnetic resonances,” IEEE Photon. J. 10, 4600811 (2018).
[Crossref]

Liu, X.

C. M. Watts, X. Liu, and W. J. Padilla, “Metamaterial electromagnetic wave absorbers,” Adv. Mater. 24, OP98–OP120 (2012).
[Crossref]

Liu, Z.

G. Liu, J. Chen, P. Pan, and Z. Liu, “Hybrid metal-semiconductor meta-surface based photo-electronic perfect absorber,” IEEE J. Sel. Top. Quantum Electron. 25, 4600507 (2018).
[Crossref]

Lu, C.

X. Huang, C. Lu, C. Rong, Z. Hu, and M. Liu, “Multiband ultrathin polarization-insensitive terahertz perfect absorbers with complementary metamaterial and resonator based on high-order electric and magnetic resonances,” IEEE Photon. J. 10, 4600811 (2018).
[Crossref]

Lu, Y.

Luo, J.

Ma, H.

Y. Cui, K. H. Fung, J. Xu, H. Ma, Y. Jin, S. He, and N. X. Fang, “Ultrabroadband light absorption by a sawtooth anisotropic metamaterial slab,” Nano Lett. 12, 1443–1447 (2012).
[Crossref]

Ma, T.

Ma, Y.

D. Kraemer, B. Poudel, H.-P. Feng, J. C. Caylor, B. Yu, X. Yan, Y. Ma, X. Wang, D. Wang, A. Muto, K. McEnaney, M. Chiesa, Z. Ren, and G. Chen, “High-performance flat-panel solar thermoelectric generators with high thermal concentration,” Nat. Mater. 10, 532–538 (2011).
[Crossref]

Mainguy, S.

J.-J. Greffet, R. Carminati, K. Joulain, J.-P. Mulet, S. Mainguy, and Y. Chen, “Coherent emission of light by thermal sources,” Nature 416, 61–64 (2002).
[Crossref]

McEnaney, K.

D. Kraemer, B. Poudel, H.-P. Feng, J. C. Caylor, B. Yu, X. Yan, Y. Ma, X. Wang, D. Wang, A. Muto, K. McEnaney, M. Chiesa, Z. Ren, and G. Chen, “High-performance flat-panel solar thermoelectric generators with high thermal concentration,” Nat. Mater. 10, 532–538 (2011).
[Crossref]

Medwal, R.

K. V. Sreekanth, M. ElKabbash, R. Medwal, J. Zhang, T. Letsou, G. Strangi, M. Hinczewski, R. S. Rawat, C. Guo, and R. Singh, “Generalized Brewster-angle effect in thin-film optical absorbers and its application for graphene hydrogen sensing,” ACS Photon. 6, 1610–1617 (2019).
[Crossref]

Mo, L.

F. Ding, L. Mo, J. Zhu, and S. He, “Lithography-free, broadband, omnidirectional, and polarization-insensitive thin optical absorber,” Appl. Phys. Lett. 106, 061108 (2015).
[Crossref]

S. He, F. Ding, L. Mo, and F. Bao, “Light absorber with an ultra-broad flat band based on multi-sized slow-wave hyperbolic metamaterial thin-films,” Prog. Electromagn. Res. 147, 69–79 (2014).
[Crossref]

Mohammadi, R.

R. Mohammadi, A. T. Lech, M. Xie, B. E. Weaver, M. T. Yeung, S. H. Tolbert, and R. B. Kaner, “Tungsten tetraboride, an inexpensive superhard material,” Proc. Natl. Acad. Sci. USA 108, 10958–10962 (2011).
[Crossref]

Mulet, J.-P.

J.-J. Greffet, R. Carminati, K. Joulain, J.-P. Mulet, S. Mainguy, and Y. Chen, “Coherent emission of light by thermal sources,” Nature 416, 61–64 (2002).
[Crossref]

Muto, A.

D. Kraemer, B. Poudel, H.-P. Feng, J. C. Caylor, B. Yu, X. Yan, Y. Ma, X. Wang, D. Wang, A. Muto, K. McEnaney, M. Chiesa, Z. Ren, and G. Chen, “High-performance flat-panel solar thermoelectric generators with high thermal concentration,” Nat. Mater. 10, 532–538 (2011).
[Crossref]

Nagpal, P.

P. Nagpal, S. E. Han, A. Stein, and D. J. Norris, “Efficient low-temperature thermophotovoltaic emitters from metallic photonic crystals,” Nano Lett. 8, 3238–3243 (2008).
[Crossref]

Naik, G. V.

G. V. Naik, V. M. Shalaev, and A. Boltasseva, “Alternative plasmonic materials: beyond gold and silver,” Adv. Mater. 25, 3264–3294 (2013).
[Crossref]

Narayanaswamy, A.

A. Narayanaswamy and G. Chen, “Surface modes for near field thermophotovoltaics,” Appl. Phys. Lett. 82, 3544–3546 (2003).
[Crossref]

Nerkararyan, K. V.

Norris, D. J.

P. Nagpal, S. E. Han, A. Stein, and D. J. Norris, “Efficient low-temperature thermophotovoltaic emitters from metallic photonic crystals,” Nano Lett. 8, 3238–3243 (2008).
[Crossref]

Novikov, S. M.

T. Søndergaard, S. M. Novikov, T. Holmgaard, R. L. Eriksen, J. Beermann, Z. Han, K. Pedersen, and S. I. Bozhevolnyi, “Plasmonic black gold by adiabatic nanofocusing and absorption of light in ultra-sharp convex grooves,” Nat. Commun. 3, 969 (2012).
[Crossref]

Olson, E.

M. Zhang, M. Y. Efremov, F. Schiettekatte, E. Olson, A. Kwan, S. Lai, T. Wisleder, J. Greene, and L. Allen, “Size-dependent melting point depression of nanostructures: nanocalorimetric measurements,” Phys. Rev. B 62, 10548–10557 (2000).
[Crossref]

Ozbek, I.

M. Usta, I. Ozbek, M. Ipek, C. Bindal, and A. Ucisik, “The characterization of borided pure tungsten,” Surf. Coat. Technol. 194, 330–334 (2005).
[Crossref]

Padilla, W. J.

C. M. Watts, X. Liu, and W. J. Padilla, “Metamaterial electromagnetic wave absorbers,” Adv. Mater. 24, OP98–OP120 (2012).
[Crossref]

Palacios, E.

Z. Li, E. Palacios, S. Butun, H. Kocer, and K. Aydin, “Omnidirectional, broadband light absorption using large-area, ultrathin lossy metallic film coatings,” Sci. Rep. 5, 15137 (2015).
[Crossref]

Pan, P.

G. Liu, J. Chen, P. Pan, and Z. Liu, “Hybrid metal-semiconductor meta-surface based photo-electronic perfect absorber,” IEEE J. Sel. Top. Quantum Electron. 25, 4600507 (2018).
[Crossref]

Pedersen, K.

T. Søndergaard, S. M. Novikov, T. Holmgaard, R. L. Eriksen, J. Beermann, Z. Han, K. Pedersen, and S. I. Bozhevolnyi, “Plasmonic black gold by adiabatic nanofocusing and absorption of light in ultra-sharp convex grooves,” Nat. Commun. 3, 969 (2012).
[Crossref]

Polman, A.

H. A. Atwater and A. Polman, “Plasmonics for improved photovoltaic devices,” Nat. Mater. 9, 205–213 (2010).
[Crossref]

Poudel, B.

D. Kraemer, B. Poudel, H.-P. Feng, J. C. Caylor, B. Yu, X. Yan, Y. Ma, X. Wang, D. Wang, A. Muto, K. McEnaney, M. Chiesa, Z. Ren, and G. Chen, “High-performance flat-panel solar thermoelectric generators with high thermal concentration,” Nat. Mater. 10, 532–538 (2011).
[Crossref]

Rawat, R. S.

K. V. Sreekanth, M. ElKabbash, R. Medwal, J. Zhang, T. Letsou, G. Strangi, M. Hinczewski, R. S. Rawat, C. Guo, and R. Singh, “Generalized Brewster-angle effect in thin-film optical absorbers and its application for graphene hydrogen sensing,” ACS Photon. 6, 1610–1617 (2019).
[Crossref]

Ren, Z.

D. Kraemer, B. Poudel, H.-P. Feng, J. C. Caylor, B. Yu, X. Yan, Y. Ma, X. Wang, D. Wang, A. Muto, K. McEnaney, M. Chiesa, Z. Ren, and G. Chen, “High-performance flat-panel solar thermoelectric generators with high thermal concentration,” Nat. Mater. 10, 532–538 (2011).
[Crossref]

Rephaeli, E.

Rinnerbauer, V.

V. Rinnerbauer, A. Lenert, D. M. Bierman, Y. X. Yeng, W. R. Chan, R. D. Geil, J. J. Senkevich, J. D. Joannopoulos, E. N. Wang, M. Soljačič, and I. Celanovic, “Metallic photonic crystal absorber-emitter for efficient spectral control in high-temperature solar thermophotovoltaics,” Adv. Energy Mater. 4, 1400334 (2014).
[Crossref]

Rong, C.

X. Huang, C. Lu, C. Rong, Z. Hu, and M. Liu, “Multiband ultrathin polarization-insensitive terahertz perfect absorbers with complementary metamaterial and resonator based on high-order electric and magnetic resonances,” IEEE Photon. J. 10, 4600811 (2018).
[Crossref]

Rosenmann, D.

Rotter, S.

W. R. Sweeney, C. W. Hsu, S. Rotter, and A. D. Stone, “Perfectly absorbing exceptional points and chiral absorbers,” Phys. Rev. Lett. 122, 093901 (2019).
[Crossref]

Schiettekatte, F.

M. Zhang, M. Y. Efremov, F. Schiettekatte, E. Olson, A. Kwan, S. Lai, T. Wisleder, J. Greene, and L. Allen, “Size-dependent melting point depression of nanostructures: nanocalorimetric measurements,” Phys. Rev. B 62, 10548–10557 (2000).
[Crossref]

Senkevich, J. J.

V. Rinnerbauer, A. Lenert, D. M. Bierman, Y. X. Yeng, W. R. Chan, R. D. Geil, J. J. Senkevich, J. D. Joannopoulos, E. N. Wang, M. Soljačič, and I. Celanovic, “Metallic photonic crystal absorber-emitter for efficient spectral control in high-temperature solar thermophotovoltaics,” Adv. Energy Mater. 4, 1400334 (2014).
[Crossref]

Shalaev, V. M.

G. V. Naik, V. M. Shalaev, and A. Boltasseva, “Alternative plasmonic materials: beyond gold and silver,” Adv. Mater. 25, 3264–3294 (2013).
[Crossref]

Singh, R.

K. V. Sreekanth, M. ElKabbash, R. Medwal, J. Zhang, T. Letsou, G. Strangi, M. Hinczewski, R. S. Rawat, C. Guo, and R. Singh, “Generalized Brewster-angle effect in thin-film optical absorbers and its application for graphene hydrogen sensing,” ACS Photon. 6, 1610–1617 (2019).
[Crossref]

Soljacic, M.

V. Rinnerbauer, A. Lenert, D. M. Bierman, Y. X. Yeng, W. R. Chan, R. D. Geil, J. J. Senkevich, J. D. Joannopoulos, E. N. Wang, M. Soljačič, and I. Celanovic, “Metallic photonic crystal absorber-emitter for efficient spectral control in high-temperature solar thermophotovoltaics,” Adv. Energy Mater. 4, 1400334 (2014).
[Crossref]

Søndergaard, T.

T. Søndergaard, S. M. Novikov, T. Holmgaard, R. L. Eriksen, J. Beermann, Z. Han, K. Pedersen, and S. I. Bozhevolnyi, “Plasmonic black gold by adiabatic nanofocusing and absorption of light in ultra-sharp convex grooves,” Nat. Commun. 3, 969 (2012).
[Crossref]

Sreekanth, K. V.

K. V. Sreekanth, M. ElKabbash, R. Medwal, J. Zhang, T. Letsou, G. Strangi, M. Hinczewski, R. S. Rawat, C. Guo, and R. Singh, “Generalized Brewster-angle effect in thin-film optical absorbers and its application for graphene hydrogen sensing,” ACS Photon. 6, 1610–1617 (2019).
[Crossref]

Stan, L.

Steenhoff, V.

V. Steenhoff, M. Theuring, M. Vehse, K. von Maydell, and C. Agert, “Ultrathin resonant-cavity-enhanced solar cells with amorphous germanium absorbers,” Adv. Opt. Mater. 3, 182–186 (2015).
[Crossref]

Stein, A.

P. Nagpal, S. E. Han, A. Stein, and D. J. Norris, “Efficient low-temperature thermophotovoltaic emitters from metallic photonic crystals,” Nano Lett. 8, 3238–3243 (2008).
[Crossref]

Sterl, F.

R. Walter, A. Tittl, A. Berrier, F. Sterl, T. Weiss, and H. Giessen, “Large-area low-cost tunable plasmonic perfect absorber in the near infrared by colloidal etching lithography,” Adv. Opt. Mater. 3, 398–403 (2015).
[Crossref]

Stone, A. D.

W. R. Sweeney, C. W. Hsu, S. Rotter, and A. D. Stone, “Perfectly absorbing exceptional points and chiral absorbers,” Phys. Rev. Lett. 122, 093901 (2019).
[Crossref]

Strangi, G.

K. V. Sreekanth, M. ElKabbash, R. Medwal, J. Zhang, T. Letsou, G. Strangi, M. Hinczewski, R. S. Rawat, C. Guo, and R. Singh, “Generalized Brewster-angle effect in thin-film optical absorbers and its application for graphene hydrogen sensing,” ACS Photon. 6, 1610–1617 (2019).
[Crossref]

Sweeney, W. R.

W. R. Sweeney, C. W. Hsu, S. Rotter, and A. D. Stone, “Perfectly absorbing exceptional points and chiral absorbers,” Phys. Rev. Lett. 122, 093901 (2019).
[Crossref]

Szwacki, N. G.

N. G. Szwacki, “The structure and hardness of the highest boride of tungsten, a borophene-based compound,” Sci. Rep. 7, 4082 (2017).
[Crossref]

Theuring, M.

V. Steenhoff, M. Theuring, M. Vehse, K. von Maydell, and C. Agert, “Ultrathin resonant-cavity-enhanced solar cells with amorphous germanium absorbers,” Adv. Opt. Mater. 3, 182–186 (2015).
[Crossref]

Tittl, A.

R. Walter, A. Tittl, A. Berrier, F. Sterl, T. Weiss, and H. Giessen, “Large-area low-cost tunable plasmonic perfect absorber in the near infrared by colloidal etching lithography,” Adv. Opt. Mater. 3, 398–403 (2015).
[Crossref]

Tolbert, S. H.

R. Mohammadi, A. T. Lech, M. Xie, B. E. Weaver, M. T. Yeung, S. H. Tolbert, and R. B. Kaner, “Tungsten tetraboride, an inexpensive superhard material,” Proc. Natl. Acad. Sci. USA 108, 10958–10962 (2011).
[Crossref]

Ucisik, A.

M. Usta, I. Ozbek, M. Ipek, C. Bindal, and A. Ucisik, “The characterization of borided pure tungsten,” Surf. Coat. Technol. 194, 330–334 (2005).
[Crossref]

Usta, M.

M. Usta, I. Ozbek, M. Ipek, C. Bindal, and A. Ucisik, “The characterization of borided pure tungsten,” Surf. Coat. Technol. 194, 330–334 (2005).
[Crossref]

Valentine, J.

W. Li and J. Valentine, “Metamaterial perfect absorber based hot electron photodetection,” Nano Lett. 14, 3510–3514 (2014).
[Crossref]

Vehse, M.

V. Steenhoff, M. Theuring, M. Vehse, K. von Maydell, and C. Agert, “Ultrathin resonant-cavity-enhanced solar cells with amorphous germanium absorbers,” Adv. Opt. Mater. 3, 182–186 (2015).
[Crossref]

von Maydell, K.

V. Steenhoff, M. Theuring, M. Vehse, K. von Maydell, and C. Agert, “Ultrathin resonant-cavity-enhanced solar cells with amorphous germanium absorbers,” Adv. Opt. Mater. 3, 182–186 (2015).
[Crossref]

Walter, R.

R. Walter, A. Tittl, A. Berrier, F. Sterl, T. Weiss, and H. Giessen, “Large-area low-cost tunable plasmonic perfect absorber in the near infrared by colloidal etching lithography,” Adv. Opt. Mater. 3, 398–403 (2015).
[Crossref]

Wang, D.

D. Kraemer, B. Poudel, H.-P. Feng, J. C. Caylor, B. Yu, X. Yan, Y. Ma, X. Wang, D. Wang, A. Muto, K. McEnaney, M. Chiesa, Z. Ren, and G. Chen, “High-performance flat-panel solar thermoelectric generators with high thermal concentration,” Nat. Mater. 10, 532–538 (2011).
[Crossref]

Wang, E. N.

V. Rinnerbauer, A. Lenert, D. M. Bierman, Y. X. Yeng, W. R. Chan, R. D. Geil, J. J. Senkevich, J. D. Joannopoulos, E. N. Wang, M. Soljačič, and I. Celanovic, “Metallic photonic crystal absorber-emitter for efficient spectral control in high-temperature solar thermophotovoltaics,” Adv. Energy Mater. 4, 1400334 (2014).
[Crossref]

Wang, X.

D. Kraemer, B. Poudel, H.-P. Feng, J. C. Caylor, B. Yu, X. Yan, Y. Ma, X. Wang, D. Wang, A. Muto, K. McEnaney, M. Chiesa, Z. Ren, and G. Chen, “High-performance flat-panel solar thermoelectric generators with high thermal concentration,” Nat. Mater. 10, 532–538 (2011).
[Crossref]

Watts, C. M.

C. M. Watts, X. Liu, and W. J. Padilla, “Metamaterial electromagnetic wave absorbers,” Adv. Mater. 24, OP98–OP120 (2012).
[Crossref]

Weaver, B. E.

R. Mohammadi, A. T. Lech, M. Xie, B. E. Weaver, M. T. Yeung, S. H. Tolbert, and R. B. Kaner, “Tungsten tetraboride, an inexpensive superhard material,” Proc. Natl. Acad. Sci. USA 108, 10958–10962 (2011).
[Crossref]

Weiss, T.

R. Walter, A. Tittl, A. Berrier, F. Sterl, T. Weiss, and H. Giessen, “Large-area low-cost tunable plasmonic perfect absorber in the near infrared by colloidal etching lithography,” Adv. Opt. Mater. 3, 398–403 (2015).
[Crossref]

Wisleder, T.

M. Zhang, M. Y. Efremov, F. Schiettekatte, E. Olson, A. Kwan, S. Lai, T. Wisleder, J. Greene, and L. Allen, “Size-dependent melting point depression of nanostructures: nanocalorimetric measurements,” Phys. Rev. B 62, 10548–10557 (2000).
[Crossref]

Xie, M.

R. Mohammadi, A. T. Lech, M. Xie, B. E. Weaver, M. T. Yeung, S. H. Tolbert, and R. B. Kaner, “Tungsten tetraboride, an inexpensive superhard material,” Proc. Natl. Acad. Sci. USA 108, 10958–10962 (2011).
[Crossref]

Xu, J.

Y. Cui, K. H. Fung, J. Xu, H. Ma, Y. Jin, S. He, and N. X. Fang, “Ultrabroadband light absorption by a sawtooth anisotropic metamaterial slab,” Nano Lett. 12, 1443–1447 (2012).
[Crossref]

Yan, X.

D. Kraemer, B. Poudel, H.-P. Feng, J. C. Caylor, B. Yu, X. Yan, Y. Ma, X. Wang, D. Wang, A. Muto, K. McEnaney, M. Chiesa, Z. Ren, and G. Chen, “High-performance flat-panel solar thermoelectric generators with high thermal concentration,” Nat. Mater. 10, 532–538 (2011).
[Crossref]

Yang, L.

Y. Cui, Y. He, Y. Jin, F. Ding, L. Yang, Y. Ye, S. Zhong, Y. Lin, and S. He, “Plasmonic and metamaterial structures as electromagnetic absorbers,” Laser Photon. Rev. 8, 495–520 (2014).
[Crossref]

Yang, X.

Ye, Y.

Y. Cui, Y. He, Y. Jin, F. Ding, L. Yang, Y. Ye, S. Zhong, Y. Lin, and S. He, “Plasmonic and metamaterial structures as electromagnetic absorbers,” Laser Photon. Rev. 8, 495–520 (2014).
[Crossref]

Yeng, Y. X.

V. Rinnerbauer, A. Lenert, D. M. Bierman, Y. X. Yeng, W. R. Chan, R. D. Geil, J. J. Senkevich, J. D. Joannopoulos, E. N. Wang, M. Soljačič, and I. Celanovic, “Metallic photonic crystal absorber-emitter for efficient spectral control in high-temperature solar thermophotovoltaics,” Adv. Energy Mater. 4, 1400334 (2014).
[Crossref]

Yeung, M. T.

R. Mohammadi, A. T. Lech, M. Xie, B. E. Weaver, M. T. Yeung, S. H. Tolbert, and R. B. Kaner, “Tungsten tetraboride, an inexpensive superhard material,” Proc. Natl. Acad. Sci. USA 108, 10958–10962 (2011).
[Crossref]

Yu, B.

D. Kraemer, B. Poudel, H.-P. Feng, J. C. Caylor, B. Yu, X. Yan, Y. Ma, X. Wang, D. Wang, A. Muto, K. McEnaney, M. Chiesa, Z. Ren, and G. Chen, “High-performance flat-panel solar thermoelectric generators with high thermal concentration,” Nat. Mater. 10, 532–538 (2011).
[Crossref]

Zhang, H.

Zhang, J.

K. V. Sreekanth, M. ElKabbash, R. Medwal, J. Zhang, T. Letsou, G. Strangi, M. Hinczewski, R. S. Rawat, C. Guo, and R. Singh, “Generalized Brewster-angle effect in thin-film optical absorbers and its application for graphene hydrogen sensing,” ACS Photon. 6, 1610–1617 (2019).
[Crossref]

Zhang, M.

M. Zhang, M. Y. Efremov, F. Schiettekatte, E. Olson, A. Kwan, S. Lai, T. Wisleder, J. Greene, and L. Allen, “Size-dependent melting point depression of nanostructures: nanocalorimetric measurements,” Phys. Rev. B 62, 10548–10557 (2000).
[Crossref]

Zhao, Y.

Zhong, S.

Y. Cui, Y. He, Y. Jin, F. Ding, L. Yang, Y. Ye, S. Zhong, Y. Lin, and S. He, “Plasmonic and metamaterial structures as electromagnetic absorbers,” Laser Photon. Rev. 8, 495–520 (2014).
[Crossref]

Zhu, J.

F. Ding, L. Mo, J. Zhu, and S. He, “Lithography-free, broadband, omnidirectional, and polarization-insensitive thin optical absorber,” Appl. Phys. Lett. 106, 061108 (2015).
[Crossref]

Zhu, P.

P. Zhu and L. Jay Guo, “High performance broadband absorber in the visible band by engineered dispersion and geometry of a metal-dielectric-metal stack,” Appl. Phys. Lett. 101, 241116 (2012).
[Crossref]

ACS Photon. (1)

K. V. Sreekanth, M. ElKabbash, R. Medwal, J. Zhang, T. Letsou, G. Strangi, M. Hinczewski, R. S. Rawat, C. Guo, and R. Singh, “Generalized Brewster-angle effect in thin-film optical absorbers and its application for graphene hydrogen sensing,” ACS Photon. 6, 1610–1617 (2019).
[Crossref]

Adv. Energy Mater. (1)

V. Rinnerbauer, A. Lenert, D. M. Bierman, Y. X. Yeng, W. R. Chan, R. D. Geil, J. J. Senkevich, J. D. Joannopoulos, E. N. Wang, M. Soljačič, and I. Celanovic, “Metallic photonic crystal absorber-emitter for efficient spectral control in high-temperature solar thermophotovoltaics,” Adv. Energy Mater. 4, 1400334 (2014).
[Crossref]

Adv. Mater. (2)

C. M. Watts, X. Liu, and W. J. Padilla, “Metamaterial electromagnetic wave absorbers,” Adv. Mater. 24, OP98–OP120 (2012).
[Crossref]

G. V. Naik, V. M. Shalaev, and A. Boltasseva, “Alternative plasmonic materials: beyond gold and silver,” Adv. Mater. 25, 3264–3294 (2013).
[Crossref]

Adv. Opt. Mater. (2)

R. Walter, A. Tittl, A. Berrier, F. Sterl, T. Weiss, and H. Giessen, “Large-area low-cost tunable plasmonic perfect absorber in the near infrared by colloidal etching lithography,” Adv. Opt. Mater. 3, 398–403 (2015).
[Crossref]

V. Steenhoff, M. Theuring, M. Vehse, K. von Maydell, and C. Agert, “Ultrathin resonant-cavity-enhanced solar cells with amorphous germanium absorbers,” Adv. Opt. Mater. 3, 182–186 (2015).
[Crossref]

Appl. Opt. (1)

Appl. Phys. Lett. (3)

P. Zhu and L. Jay Guo, “High performance broadband absorber in the visible band by engineered dispersion and geometry of a metal-dielectric-metal stack,” Appl. Phys. Lett. 101, 241116 (2012).
[Crossref]

A. Narayanaswamy and G. Chen, “Surface modes for near field thermophotovoltaics,” Appl. Phys. Lett. 82, 3544–3546 (2003).
[Crossref]

F. Ding, L. Mo, J. Zhu, and S. He, “Lithography-free, broadband, omnidirectional, and polarization-insensitive thin optical absorber,” Appl. Phys. Lett. 106, 061108 (2015).
[Crossref]

IEEE J. Sel. Top. Quantum Electron. (1)

G. Liu, J. Chen, P. Pan, and Z. Liu, “Hybrid metal-semiconductor meta-surface based photo-electronic perfect absorber,” IEEE J. Sel. Top. Quantum Electron. 25, 4600507 (2018).
[Crossref]

IEEE Photon. J. (1)

X. Huang, C. Lu, C. Rong, Z. Hu, and M. Liu, “Multiband ultrathin polarization-insensitive terahertz perfect absorbers with complementary metamaterial and resonator based on high-order electric and magnetic resonances,” IEEE Photon. J. 10, 4600811 (2018).
[Crossref]

J. Phys. Condens. Matter (1)

B. Huttner, “Optical properties of polyvalent metals in the solid and liquid state: aluminum,” J. Phys. Condens. Matter 6, 2459–2474 (1994).
[Crossref]

Laser Photon. Rev. (1)

Y. Cui, Y. He, Y. Jin, F. Ding, L. Yang, Y. Ye, S. Zhong, Y. Lin, and S. He, “Plasmonic and metamaterial structures as electromagnetic absorbers,” Laser Photon. Rev. 8, 495–520 (2014).
[Crossref]

Nano Lett. (3)

W. Li and J. Valentine, “Metamaterial perfect absorber based hot electron photodetection,” Nano Lett. 14, 3510–3514 (2014).
[Crossref]

Y. Cui, K. H. Fung, J. Xu, H. Ma, Y. Jin, S. He, and N. X. Fang, “Ultrabroadband light absorption by a sawtooth anisotropic metamaterial slab,” Nano Lett. 12, 1443–1447 (2012).
[Crossref]

P. Nagpal, S. E. Han, A. Stein, and D. J. Norris, “Efficient low-temperature thermophotovoltaic emitters from metallic photonic crystals,” Nano Lett. 8, 3238–3243 (2008).
[Crossref]

Nat. Commun. (1)

T. Søndergaard, S. M. Novikov, T. Holmgaard, R. L. Eriksen, J. Beermann, Z. Han, K. Pedersen, and S. I. Bozhevolnyi, “Plasmonic black gold by adiabatic nanofocusing and absorption of light in ultra-sharp convex grooves,” Nat. Commun. 3, 969 (2012).
[Crossref]

Nat. Mater. (2)

D. Kraemer, B. Poudel, H.-P. Feng, J. C. Caylor, B. Yu, X. Yan, Y. Ma, X. Wang, D. Wang, A. Muto, K. McEnaney, M. Chiesa, Z. Ren, and G. Chen, “High-performance flat-panel solar thermoelectric generators with high thermal concentration,” Nat. Mater. 10, 532–538 (2011).
[Crossref]

H. A. Atwater and A. Polman, “Plasmonics for improved photovoltaic devices,” Nat. Mater. 9, 205–213 (2010).
[Crossref]

Nature (1)

J.-J. Greffet, R. Carminati, K. Joulain, J.-P. Mulet, S. Mainguy, and Y. Chen, “Coherent emission of light by thermal sources,” Nature 416, 61–64 (2002).
[Crossref]

Opt. Express (4)

Opt. Lett. (1)

Phys. Rev. B (1)

M. Zhang, M. Y. Efremov, F. Schiettekatte, E. Olson, A. Kwan, S. Lai, T. Wisleder, J. Greene, and L. Allen, “Size-dependent melting point depression of nanostructures: nanocalorimetric measurements,” Phys. Rev. B 62, 10548–10557 (2000).
[Crossref]

Phys. Rev. Lett. (1)

W. R. Sweeney, C. W. Hsu, S. Rotter, and A. D. Stone, “Perfectly absorbing exceptional points and chiral absorbers,” Phys. Rev. Lett. 122, 093901 (2019).
[Crossref]

Proc. Natl. Acad. Sci. USA (1)

R. Mohammadi, A. T. Lech, M. Xie, B. E. Weaver, M. T. Yeung, S. H. Tolbert, and R. B. Kaner, “Tungsten tetraboride, an inexpensive superhard material,” Proc. Natl. Acad. Sci. USA 108, 10958–10962 (2011).
[Crossref]

Prog. Electromagn. Res. (1)

S. He, F. Ding, L. Mo, and F. Bao, “Light absorber with an ultra-broad flat band based on multi-sized slow-wave hyperbolic metamaterial thin-films,” Prog. Electromagn. Res. 147, 69–79 (2014).
[Crossref]

Sci. Rep. (2)

Z. Li, E. Palacios, S. Butun, H. Kocer, and K. Aydin, “Omnidirectional, broadband light absorption using large-area, ultrathin lossy metallic film coatings,” Sci. Rep. 5, 15137 (2015).
[Crossref]

N. G. Szwacki, “The structure and hardness of the highest boride of tungsten, a borophene-based compound,” Sci. Rep. 7, 4082 (2017).
[Crossref]

Surf. Coat. Technol. (1)

M. Usta, I. Ozbek, M. Ipek, C. Bindal, and A. Ucisik, “The characterization of borided pure tungsten,” Surf. Coat. Technol. 194, 330–334 (2005).
[Crossref]

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (8)

Fig. 1.
Fig. 1. Schematic of an MIM perfect absorber. (a) Three-dimensional structure. (b) Side view in the $ x - y $ plane.
Fig. 2.
Fig. 2. Simulated (a) absorption as a function of wavelength with different incident angles without roughness. (b) Contour plot reflectance as a function of wavelength with incident angle. (c) Contour transmission as a function of wavelength with incident angle.
Fig. 3.
Fig. 3. (a) Simulated absorption as a function of wavelength with different incident angles for WB. (b) Electric field profile of WB absorber.
Fig. 4.
Fig. 4. (a) SEM images of the (a) (Al- $ {\rm{SiO}_2} $ -Al). (b) Experimentally measured absorption at different incident angles.
Fig. 5.
Fig. 5. Simulated absorption as a function of wavelength with different incident angles for rough surface of Al.
Fig. 6.
Fig. 6. (a) SEM images of the (WB- $ {\rm{SiO}_2} $ -WB). (b) Experimentally measured absorption at different incident angles.
Fig. 7.
Fig. 7. (a) Simulated measured temperature-dependent absorption spectra of Al-based multilayer absorber. (b) Experimentally measured temperature-dependent absorption spectra of Al-based multilayer absorber for a fixed wavelength at 1053 nm.
Fig. 8.
Fig. 8. Experimentally measured temperature-dependent absorption spectra of WB-based multilayer perfect absorber.

Metrics