Abstract

We design and numerically analyze high-quality (Q) multiple Fano resonances based on a hybrid metamaterial waveguide structure, which consists of T-shaped gold cut wires placed on a dielectric board waveguide. There are three sharp Fano peaks arising from the interference between plasmon dipole mode and different guided modes. The physical origin of obvious Fano behaviors is explained by the three-level plasmonic system and slab waveguide theory. The largest Q-factor reaches 547, and modulation depth of the peak C can get to nearly 100%, making it possible to perfectly realize the Fano switch function. Combining the cramped spectral lines with large near-field confinement, we demonstrate an optical refractive index sensor with a sensitivity of 4920 nm/RIU and a figure of merit of 188. This work provides a way to obtain multiple high Q-factor Fano resonances, which can widen channels for fabricating devices in biochemical sensing and optical switching.

© 2018 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Fano resonances in THz metamaterials composed of continuous metallic wires and split ring resonators

Zhaofeng Li, Semih Cakmakyapan, Bayram Butun, Christina Daskalaki, Stelios Tzortzakis, Xiaodong Yang, and Ekmel Ozbay
Opt. Express 22(22) 26572-26584 (2014)

High-quality-factor multiple Fano resonances for refractive index sensing

Yuebian Zhang, Wenwei Liu, Zhancheng Li, Zhi Li, Hua Cheng, Shuqi Chen, and Jianguo Tian
Opt. Lett. 43(8) 1842-1845 (2018)

Reconfigurable hybrid metamaterial waveguide system at terahertz regime

Xiaolei Zhao, Lin Zhu, Cai Yuan, and Jianquan Yao
Opt. Express 24(16) 18244-18251 (2016)

References

You do not have subscription access to this journal. Citation lists with outbound citation links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Figures (5)

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Tables (1)

You do not have subscription access to this journal. Article tables are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Equations (5)

You do not have subscription access to this journal. Equations are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Metrics

You do not have subscription access to this journal. Article level metrics are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription