Abstract

A hybrid computational method of plane-wave and cylindrical-wave expansions for distributed Bragg-reflector (DBR) pillars is proposed. The plane-wave expansion is employed to represent the one-dimensional periodic structure of the DBR. The cylindrical-wave expansion is employed to describe the scattering by circular pillars with the DBR structure inside. This formalism enables us to calculate the radiation fields, t matrices, scattering cross sections, photonic band structures, and quality factors of the DBR pillars. Furthermore, optical properties of arrayed DBR pillars are also investigated with the aid of the multiple-scattering method. Using this formalism, we demonstrate explicitly that high Q photonic band modes including the so-called bound states in continuum are obtained both in isolated and arrayed DBR pillars. We also present a novel formation of gapless Dirac-cone surface states in a three-dimensional photonic crystal composed of a two-dimensional periodic arrangement of core-shell DBR pillars.

© 2018 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Accidental degeneracy in photonic bands and topological phase transitions in two-dimensional core-shell dielectric photonic crystals

Lin Xu, Hai-Xiao Wang, Ya-Dong Xu, Huan-Yang Chen, and Jian-Hua Jiang
Opt. Express 24(16) 18059-18071 (2016)

Plane wave expansion method used to engineer photonic crystal sensors with high efficiency

Roman Antos, Vojtech Vozda, and Martin Veis
Opt. Express 22(3) 2562-2577 (2014)

References

You do not have subscription access to this journal. Citation lists with outbound citation links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Figures (8)

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Equations (125)

You do not have subscription access to this journal. Equations are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Metrics

You do not have subscription access to this journal. Article level metrics are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription