Abstract

We explore the bipartite non-classical correlations of two quantum wells coupled to two spatially separated microcavities. The microcavities are filled by linear optical media and linked by a single-mode optical fiber. We prove that it is possible to generate a correlation from the initially uncorrelated state. With particular coupling constants of the cavity-exciton and the fiber-cavity coupling, the maximum correlations can be generated periodically, and sudden changes occur only in the local quantum uncertainty. The optical susceptibility and coupling constants control the regularity, amplitudes, and frequencies of the correlation functions. When the system initially starts with a maximally correlated state, we show that the correlation robustness of the Wigner-Yanase skew information and Bell’s inequality depends not only on the coupling strengths and optical susceptibility but also on the dissipation rates. Deterioration of the correlations is substantially associated with the dissipation.

© 2017 Optical Society of America

Full Article  |  PDF Article
More Like This
Generation of a non-zero discord bipartite state with classical second-order interference

Yujun Choi, Kang-Hee Hong, Hyang-Tag Lim, Jiwon Yune, Osung Kwon, Sang-Wook Han, Kyunghwan Oh, Yoon-Ho Kim, Yong-Su Kim, and Sung Moon
Opt. Express 25(3) 2540-2551 (2017)

Thermal effects on bipartite and multipartite correlations in fiber coupled cavity arrays

Jian-Song Zhang and Ai-Xi Chen
J. Opt. Soc. Am. B 31(5) 1126-1131 (2014)

References

  • View by:

  1. H. Eleuch, “Entanglement and autocorrelation function in semiconductor microcavities,” Int. J. Mod. Phys. B 24, 5653–5662 (2010).
    [Crossref]
  2. G. Adesso, T. R. Bromley, and M. Cianciaruso, “Measures and applications of quantum correlations,” J. Phys. A 49, 473001 (2016).
    [Crossref]
  3. E. A. Sete, H. Eleuch, and C. H. R. Ooi, “Light-to-matter entanglement transfer in optomechanics,” J. Opt. Soc. Am. B 31, 2821–2828 (2014).
    [Crossref]
  4. E. A. Sete and H. Eleuch, “Strong squeezing and robust entanglement in cavity electromechanics,” Phys. Rev. A 89, 013841 (2014).
    [Crossref]
  5. M. A. Nielsen and I. L. Chuang, Quantum Computation and Quantum Information (Cambridge University, 2000).
  6. E. A. Sete and H. Eleuch, “High-efficiency quantum state transfer and quantum memory using a mechanical oscillator,” Phys. Rev. A 91, 032309 (2015).
    [Crossref]
  7. S. Luo and S. Fu, “Global effects of quantum states induced by locally invariant measurements,” Europhys. Lett. 92, 20004 (2010).
    [Crossref]
  8. S. Luo and S. Fu, “Measurement-induced nonlocality,” Phys. Rev. Lett. 106, 120401 (2011).
    [Crossref]
  9. H. Ollivier and W. H. Zurek, “Quantum discord: a measure of the quantumness of correlations,” Phys. Rev. Lett. 88, 017901 (2001).
    [Crossref]
  10. L. Henderson and V. Vedral, “Classical, quantum and total correlations,” J. Phys. A 34, 6899–6905 (2001).
    [Crossref]
  11. K. Berrada, H. Eleuch, and Y. Hassouni, “Asymptotic dynamics of quantum discord in open quantum systems,” J. Phys. B 44, 145503 (2011).
    [Crossref]
  12. D. Girolami, T. Tufarelli, and G. Adesso, “Characterizing nonclassical correlations via local quantum uncertainty,” Phys. Rev. Lett. 110, 240402 (2013).
    [Crossref]
  13. S.-X. Wu, J. Zhang, C.-S. Yu, and H.-S. Song, “Uncertainty-induced quantum nonlocality,” Phys. Lett. A 378, 344–347 (2014).
    [Crossref]
  14. C.-S. Yu, “Quantum coherence via skew information and its polygamy,” Phys. Rev. A 95, 042337 (2017).
    [Crossref]
  15. E. P. Wigner and M. M. Yanase, “Information contents of distributions,” Proc. Natl. Acad. Sci. USA 49, 910–918 (1963).
    [Crossref]
  16. N. Metwally, A. Al-Mannai, and M. Abdel-Aty, “Skew information for a single Cooper pair box interacting with a single cavity field,” Commun. Theor. Phys. 59, 769–772 (2013).
    [Crossref]
  17. J. S. Sales, W. B. Cardoso, A. T. Avelar, and N. G. de Almeida, “Dynamics of nonclassical correlations via local quantum uncertainty for atom and field interacting into a lossy cavity QED,” Physica A 443, 399–405 (2016).
    [Crossref]
  18. A. Sen, D. Sarkar, and A. Bhar, “Local quantum uncertainty in two-qubit separable states: a case study,” Quantum Inf. Process. 15, 233–243 (2016).
    [Crossref]
  19. Z. He, C. Yao, Q. Wang, and J. Zou, “Measuring non-Markovianity based on local quantum uncertainty,” Phys. Rev. A 90, 042101 (2014).
    [Crossref]
  20. C.-C. Liu and L. Ye, “Probing quantum coherence, uncertainty, steerability of quantum coherence and quantum phase transition in the spin model,” Quantum Inf. Process. 16, 138 (2017).
    [Crossref]
  21. A.-B. A. Mohamed and H. Eleuch, “Quantum correlation control for two semiconductor microcavities connected by an optical fiber,” Phys. Scripta 92, 065101 (2017).
    [Crossref]
  22. H. Jeong, J. Lee, and M. S. Kim, “Dynamics of nonlocality for a two-mode squeezed state in a thermal environment,” Phys. Rev. A 61, 052101 (2000).
    [Crossref]
  23. A.-B. A. Mohamed, A. Joshi, and S. S. Hassan, “Enhancing non-local correlations in the bipartite partitions of two qubit-system with non-mutual interaction,” Ann. Phys. 366, 32–44 (2016).
    [Crossref]
  24. L. Mazzola, B. Bellomo, R. Lo-Franco, and G. Compagno, “Connection among entanglement, mixedness, and nonlocality in a dynamical context,” Phys. Rev. A 81, 052116 (2010).
    [Crossref]
  25. A.-B. A. Mohameda, A. Joshi, and S. S. Hassan, “Bipartite non-local correlations in a double quantum dot excitonic system,” J. Phys. A 47, 335301 (2014).
    [Crossref]
  26. J. S. Bell, “On the Einstein-Podolsky-Rosen paradox,” Physics 1, 195–200 (1964).
  27. A. Acin, N. Gisin, and L. Masanes, “From Bells theorem to secure quantum key distribution,” Phys. Rev. Lett. 97, 120405 (2006).
    [Crossref]
  28. N. Gisin and R. Thew, “Quantum communication,” Nat. Photonics 1, 165–171 (2007).
    [Crossref]
  29. J. I. Cirac, A. K. Ekert, S. F. Huelga, and C. Macchiavello, “Distributed quantum computation over noisy channels,” Phys. Rev. A 59, 4249–4254 (1999).
    [Crossref]
  30. M. Paternostro, M. S. Kim, and G. M. Palma, “Non local quantum gates: a cavity quantum electrodynamics implementation,” J. Mod. Opt. 50, 2075–2094 (2003).
    [Crossref]
  31. T. Pellizzari, “Quantum networking with optical fibres,” Phys. Rev. Lett. 79, 5242–5245 (1997).
    [Crossref]
  32. S. Clark, A. Peng, M. Gu, and S. Parkins, “Unconditional preparation of entanglement between atoms in cascaded optical cavities,” Phys. Rev. Lett. 91, 177901 (2003).
    [Crossref]
  33. S. Mancini and S. Bose, “Ponderomotive entangling of atomic motions,” Phys. Rev. A 64, 032308 (2001).
    [Crossref]
  34. L.-M. Duan and H. J. Kimble, “Efficient engineering of multiatom entanglement through single-photon detections,” Phys. Rev. Lett. 90, 253601 (2003).
    [Crossref]
  35. J. Cho and H.-W. Lee, “Generation of atomic cluster states through the cavity input-output process,” Phys. Rev. Lett. 95, 160501 (2005).
    [Crossref]
  36. A. Serafini, S. Mancini, and S. Bose, “Distributed quantum computation via optical fibers,” Phys. Rev. Lett. 96, 010503 (2006).
    [Crossref]
  37. S. L. Su, X. Q. Shao, Q. Guo, L. Y. Cheng, H. F. Wang, and S. Zhang, “Preparation of entanglement between atoms in spatially separated cavities via fiber loss,” Eur. Phys. J. D 69, 123 (2015).
    [Crossref]
  38. I. M. Mirza, “Bi- and uni-photon entanglement in two-way cascaded fiber-coupled atomcavity systems,” Phys. Lett. A 379, 1643–1648 (2015).
    [Crossref]
  39. B. Zheng, L.-T. Shen, and M.-F. Chen, “Entanglement and quantum state transfer between two atoms trapped in two indirectly coupled cavities,” Quantum Inf. Process. 15, 2181–2191 (2016).
    [Crossref]
  40. R. C. Yang, X. Lin, and X. M. Lin, “Generation of three-qutrit singlet states for three atoms trapped in separated cavities,” Opt. Commun. 338, 366–370 (2015).
    [Crossref]
  41. D. Y. Wanga, J. J. Wenb, C. H. Bai, S. Hua, W. X. Cui, H. F. Wanga, A. D. Zhua, and S. Zhanga, “Scheme for generating the singlet state of three atoms trapped in distant cavities coupled by optical fibers,” Ann. Phys. 360, 228–236 (2015).
    [Crossref]
  42. R. Houdre, C. Weisbuch, R. P. Stanley, U. Oesterle, and M. Ilegems, “Nonlinear emission of semiconductor microcavities in the strong coupling regime,” Phys. Rev. Lett. 85, 2793–2796 (2000).
    [Crossref]
  43. E. Giacobino, J.-P. Karr, G. Messin, H. Eleuch, and A. Baas, “Quantum optical effects in semiconductor microcavities,” C. R. Phys. 3, 41–52 (2002).
    [Crossref]
  44. H. Eleuch, J. M. Courty, G. Messin, C. Fabre, and E. Giacobino, “Cavity QED effects in semiconductor microcavities,” J. Opt. B 1, 1–7 (1999).
    [Crossref]
  45. W. H. Louisell, Quantum Statistical Properties of Radiation (Wiley, 1973).
  46. H. Eleuch, “Autocorrelation function of microcavity-emitting field in the linear regime,” Eur. Phys. J. D 48, 139–143 (2008).
    [Crossref]
  47. H. Eleuch, “Photon statistics of light in semiconductor microcavities,” J. Phys. B 41, 055502 (2008).
    [Crossref]
  48. A.-B. Mohamed and H. Eleuch, “Non-classical effects in cavity QED containing a nonlinear optical medium and a quantum well: Entanglement and non-Gaussanity,” Eur. Phys. J. D 69, 191 (2015).
    [Crossref]
  49. B. Dakic, V. Vedral, and C. Brukner, “Necessary and sufficient condition for non-zero quantum discord,” Phys. Rev. Lett. 105, 190502 (2010).
    [Crossref]

2017 (3)

C.-S. Yu, “Quantum coherence via skew information and its polygamy,” Phys. Rev. A 95, 042337 (2017).
[Crossref]

C.-C. Liu and L. Ye, “Probing quantum coherence, uncertainty, steerability of quantum coherence and quantum phase transition in the spin model,” Quantum Inf. Process. 16, 138 (2017).
[Crossref]

A.-B. A. Mohamed and H. Eleuch, “Quantum correlation control for two semiconductor microcavities connected by an optical fiber,” Phys. Scripta 92, 065101 (2017).
[Crossref]

2016 (5)

J. S. Sales, W. B. Cardoso, A. T. Avelar, and N. G. de Almeida, “Dynamics of nonclassical correlations via local quantum uncertainty for atom and field interacting into a lossy cavity QED,” Physica A 443, 399–405 (2016).
[Crossref]

A. Sen, D. Sarkar, and A. Bhar, “Local quantum uncertainty in two-qubit separable states: a case study,” Quantum Inf. Process. 15, 233–243 (2016).
[Crossref]

G. Adesso, T. R. Bromley, and M. Cianciaruso, “Measures and applications of quantum correlations,” J. Phys. A 49, 473001 (2016).
[Crossref]

A.-B. A. Mohamed, A. Joshi, and S. S. Hassan, “Enhancing non-local correlations in the bipartite partitions of two qubit-system with non-mutual interaction,” Ann. Phys. 366, 32–44 (2016).
[Crossref]

B. Zheng, L.-T. Shen, and M.-F. Chen, “Entanglement and quantum state transfer between two atoms trapped in two indirectly coupled cavities,” Quantum Inf. Process. 15, 2181–2191 (2016).
[Crossref]

2015 (6)

R. C. Yang, X. Lin, and X. M. Lin, “Generation of three-qutrit singlet states for three atoms trapped in separated cavities,” Opt. Commun. 338, 366–370 (2015).
[Crossref]

D. Y. Wanga, J. J. Wenb, C. H. Bai, S. Hua, W. X. Cui, H. F. Wanga, A. D. Zhua, and S. Zhanga, “Scheme for generating the singlet state of three atoms trapped in distant cavities coupled by optical fibers,” Ann. Phys. 360, 228–236 (2015).
[Crossref]

A.-B. Mohamed and H. Eleuch, “Non-classical effects in cavity QED containing a nonlinear optical medium and a quantum well: Entanglement and non-Gaussanity,” Eur. Phys. J. D 69, 191 (2015).
[Crossref]

S. L. Su, X. Q. Shao, Q. Guo, L. Y. Cheng, H. F. Wang, and S. Zhang, “Preparation of entanglement between atoms in spatially separated cavities via fiber loss,” Eur. Phys. J. D 69, 123 (2015).
[Crossref]

I. M. Mirza, “Bi- and uni-photon entanglement in two-way cascaded fiber-coupled atomcavity systems,” Phys. Lett. A 379, 1643–1648 (2015).
[Crossref]

E. A. Sete and H. Eleuch, “High-efficiency quantum state transfer and quantum memory using a mechanical oscillator,” Phys. Rev. A 91, 032309 (2015).
[Crossref]

2014 (5)

E. A. Sete, H. Eleuch, and C. H. R. Ooi, “Light-to-matter entanglement transfer in optomechanics,” J. Opt. Soc. Am. B 31, 2821–2828 (2014).
[Crossref]

E. A. Sete and H. Eleuch, “Strong squeezing and robust entanglement in cavity electromechanics,” Phys. Rev. A 89, 013841 (2014).
[Crossref]

Z. He, C. Yao, Q. Wang, and J. Zou, “Measuring non-Markovianity based on local quantum uncertainty,” Phys. Rev. A 90, 042101 (2014).
[Crossref]

S.-X. Wu, J. Zhang, C.-S. Yu, and H.-S. Song, “Uncertainty-induced quantum nonlocality,” Phys. Lett. A 378, 344–347 (2014).
[Crossref]

A.-B. A. Mohameda, A. Joshi, and S. S. Hassan, “Bipartite non-local correlations in a double quantum dot excitonic system,” J. Phys. A 47, 335301 (2014).
[Crossref]

2013 (2)

N. Metwally, A. Al-Mannai, and M. Abdel-Aty, “Skew information for a single Cooper pair box interacting with a single cavity field,” Commun. Theor. Phys. 59, 769–772 (2013).
[Crossref]

D. Girolami, T. Tufarelli, and G. Adesso, “Characterizing nonclassical correlations via local quantum uncertainty,” Phys. Rev. Lett. 110, 240402 (2013).
[Crossref]

2011 (2)

S. Luo and S. Fu, “Measurement-induced nonlocality,” Phys. Rev. Lett. 106, 120401 (2011).
[Crossref]

K. Berrada, H. Eleuch, and Y. Hassouni, “Asymptotic dynamics of quantum discord in open quantum systems,” J. Phys. B 44, 145503 (2011).
[Crossref]

2010 (4)

H. Eleuch, “Entanglement and autocorrelation function in semiconductor microcavities,” Int. J. Mod. Phys. B 24, 5653–5662 (2010).
[Crossref]

S. Luo and S. Fu, “Global effects of quantum states induced by locally invariant measurements,” Europhys. Lett. 92, 20004 (2010).
[Crossref]

L. Mazzola, B. Bellomo, R. Lo-Franco, and G. Compagno, “Connection among entanglement, mixedness, and nonlocality in a dynamical context,” Phys. Rev. A 81, 052116 (2010).
[Crossref]

B. Dakic, V. Vedral, and C. Brukner, “Necessary and sufficient condition for non-zero quantum discord,” Phys. Rev. Lett. 105, 190502 (2010).
[Crossref]

2008 (2)

H. Eleuch, “Autocorrelation function of microcavity-emitting field in the linear regime,” Eur. Phys. J. D 48, 139–143 (2008).
[Crossref]

H. Eleuch, “Photon statistics of light in semiconductor microcavities,” J. Phys. B 41, 055502 (2008).
[Crossref]

2007 (1)

N. Gisin and R. Thew, “Quantum communication,” Nat. Photonics 1, 165–171 (2007).
[Crossref]

2006 (2)

A. Acin, N. Gisin, and L. Masanes, “From Bells theorem to secure quantum key distribution,” Phys. Rev. Lett. 97, 120405 (2006).
[Crossref]

A. Serafini, S. Mancini, and S. Bose, “Distributed quantum computation via optical fibers,” Phys. Rev. Lett. 96, 010503 (2006).
[Crossref]

2005 (1)

J. Cho and H.-W. Lee, “Generation of atomic cluster states through the cavity input-output process,” Phys. Rev. Lett. 95, 160501 (2005).
[Crossref]

2003 (3)

L.-M. Duan and H. J. Kimble, “Efficient engineering of multiatom entanglement through single-photon detections,” Phys. Rev. Lett. 90, 253601 (2003).
[Crossref]

M. Paternostro, M. S. Kim, and G. M. Palma, “Non local quantum gates: a cavity quantum electrodynamics implementation,” J. Mod. Opt. 50, 2075–2094 (2003).
[Crossref]

S. Clark, A. Peng, M. Gu, and S. Parkins, “Unconditional preparation of entanglement between atoms in cascaded optical cavities,” Phys. Rev. Lett. 91, 177901 (2003).
[Crossref]

2002 (1)

E. Giacobino, J.-P. Karr, G. Messin, H. Eleuch, and A. Baas, “Quantum optical effects in semiconductor microcavities,” C. R. Phys. 3, 41–52 (2002).
[Crossref]

2001 (3)

S. Mancini and S. Bose, “Ponderomotive entangling of atomic motions,” Phys. Rev. A 64, 032308 (2001).
[Crossref]

H. Ollivier and W. H. Zurek, “Quantum discord: a measure of the quantumness of correlations,” Phys. Rev. Lett. 88, 017901 (2001).
[Crossref]

L. Henderson and V. Vedral, “Classical, quantum and total correlations,” J. Phys. A 34, 6899–6905 (2001).
[Crossref]

2000 (2)

H. Jeong, J. Lee, and M. S. Kim, “Dynamics of nonlocality for a two-mode squeezed state in a thermal environment,” Phys. Rev. A 61, 052101 (2000).
[Crossref]

R. Houdre, C. Weisbuch, R. P. Stanley, U. Oesterle, and M. Ilegems, “Nonlinear emission of semiconductor microcavities in the strong coupling regime,” Phys. Rev. Lett. 85, 2793–2796 (2000).
[Crossref]

1999 (2)

H. Eleuch, J. M. Courty, G. Messin, C. Fabre, and E. Giacobino, “Cavity QED effects in semiconductor microcavities,” J. Opt. B 1, 1–7 (1999).
[Crossref]

J. I. Cirac, A. K. Ekert, S. F. Huelga, and C. Macchiavello, “Distributed quantum computation over noisy channels,” Phys. Rev. A 59, 4249–4254 (1999).
[Crossref]

1997 (1)

T. Pellizzari, “Quantum networking with optical fibres,” Phys. Rev. Lett. 79, 5242–5245 (1997).
[Crossref]

1964 (1)

J. S. Bell, “On the Einstein-Podolsky-Rosen paradox,” Physics 1, 195–200 (1964).

1963 (1)

E. P. Wigner and M. M. Yanase, “Information contents of distributions,” Proc. Natl. Acad. Sci. USA 49, 910–918 (1963).
[Crossref]

Abdel-Aty, M.

N. Metwally, A. Al-Mannai, and M. Abdel-Aty, “Skew information for a single Cooper pair box interacting with a single cavity field,” Commun. Theor. Phys. 59, 769–772 (2013).
[Crossref]

Acin, A.

A. Acin, N. Gisin, and L. Masanes, “From Bells theorem to secure quantum key distribution,” Phys. Rev. Lett. 97, 120405 (2006).
[Crossref]

Adesso, G.

G. Adesso, T. R. Bromley, and M. Cianciaruso, “Measures and applications of quantum correlations,” J. Phys. A 49, 473001 (2016).
[Crossref]

D. Girolami, T. Tufarelli, and G. Adesso, “Characterizing nonclassical correlations via local quantum uncertainty,” Phys. Rev. Lett. 110, 240402 (2013).
[Crossref]

Al-Mannai, A.

N. Metwally, A. Al-Mannai, and M. Abdel-Aty, “Skew information for a single Cooper pair box interacting with a single cavity field,” Commun. Theor. Phys. 59, 769–772 (2013).
[Crossref]

Avelar, A. T.

J. S. Sales, W. B. Cardoso, A. T. Avelar, and N. G. de Almeida, “Dynamics of nonclassical correlations via local quantum uncertainty for atom and field interacting into a lossy cavity QED,” Physica A 443, 399–405 (2016).
[Crossref]

Baas, A.

E. Giacobino, J.-P. Karr, G. Messin, H. Eleuch, and A. Baas, “Quantum optical effects in semiconductor microcavities,” C. R. Phys. 3, 41–52 (2002).
[Crossref]

Bai, C. H.

D. Y. Wanga, J. J. Wenb, C. H. Bai, S. Hua, W. X. Cui, H. F. Wanga, A. D. Zhua, and S. Zhanga, “Scheme for generating the singlet state of three atoms trapped in distant cavities coupled by optical fibers,” Ann. Phys. 360, 228–236 (2015).
[Crossref]

Bell, J. S.

J. S. Bell, “On the Einstein-Podolsky-Rosen paradox,” Physics 1, 195–200 (1964).

Bellomo, B.

L. Mazzola, B. Bellomo, R. Lo-Franco, and G. Compagno, “Connection among entanglement, mixedness, and nonlocality in a dynamical context,” Phys. Rev. A 81, 052116 (2010).
[Crossref]

Berrada, K.

K. Berrada, H. Eleuch, and Y. Hassouni, “Asymptotic dynamics of quantum discord in open quantum systems,” J. Phys. B 44, 145503 (2011).
[Crossref]

Bhar, A.

A. Sen, D. Sarkar, and A. Bhar, “Local quantum uncertainty in two-qubit separable states: a case study,” Quantum Inf. Process. 15, 233–243 (2016).
[Crossref]

Bose, S.

A. Serafini, S. Mancini, and S. Bose, “Distributed quantum computation via optical fibers,” Phys. Rev. Lett. 96, 010503 (2006).
[Crossref]

S. Mancini and S. Bose, “Ponderomotive entangling of atomic motions,” Phys. Rev. A 64, 032308 (2001).
[Crossref]

Bromley, T. R.

G. Adesso, T. R. Bromley, and M. Cianciaruso, “Measures and applications of quantum correlations,” J. Phys. A 49, 473001 (2016).
[Crossref]

Brukner, C.

B. Dakic, V. Vedral, and C. Brukner, “Necessary and sufficient condition for non-zero quantum discord,” Phys. Rev. Lett. 105, 190502 (2010).
[Crossref]

Cardoso, W. B.

J. S. Sales, W. B. Cardoso, A. T. Avelar, and N. G. de Almeida, “Dynamics of nonclassical correlations via local quantum uncertainty for atom and field interacting into a lossy cavity QED,” Physica A 443, 399–405 (2016).
[Crossref]

Chen, M.-F.

B. Zheng, L.-T. Shen, and M.-F. Chen, “Entanglement and quantum state transfer between two atoms trapped in two indirectly coupled cavities,” Quantum Inf. Process. 15, 2181–2191 (2016).
[Crossref]

Cheng, L. Y.

S. L. Su, X. Q. Shao, Q. Guo, L. Y. Cheng, H. F. Wang, and S. Zhang, “Preparation of entanglement between atoms in spatially separated cavities via fiber loss,” Eur. Phys. J. D 69, 123 (2015).
[Crossref]

Cho, J.

J. Cho and H.-W. Lee, “Generation of atomic cluster states through the cavity input-output process,” Phys. Rev. Lett. 95, 160501 (2005).
[Crossref]

Chuang, I. L.

M. A. Nielsen and I. L. Chuang, Quantum Computation and Quantum Information (Cambridge University, 2000).

Cianciaruso, M.

G. Adesso, T. R. Bromley, and M. Cianciaruso, “Measures and applications of quantum correlations,” J. Phys. A 49, 473001 (2016).
[Crossref]

Cirac, J. I.

J. I. Cirac, A. K. Ekert, S. F. Huelga, and C. Macchiavello, “Distributed quantum computation over noisy channels,” Phys. Rev. A 59, 4249–4254 (1999).
[Crossref]

Clark, S.

S. Clark, A. Peng, M. Gu, and S. Parkins, “Unconditional preparation of entanglement between atoms in cascaded optical cavities,” Phys. Rev. Lett. 91, 177901 (2003).
[Crossref]

Compagno, G.

L. Mazzola, B. Bellomo, R. Lo-Franco, and G. Compagno, “Connection among entanglement, mixedness, and nonlocality in a dynamical context,” Phys. Rev. A 81, 052116 (2010).
[Crossref]

Courty, J. M.

H. Eleuch, J. M. Courty, G. Messin, C. Fabre, and E. Giacobino, “Cavity QED effects in semiconductor microcavities,” J. Opt. B 1, 1–7 (1999).
[Crossref]

Cui, W. X.

D. Y. Wanga, J. J. Wenb, C. H. Bai, S. Hua, W. X. Cui, H. F. Wanga, A. D. Zhua, and S. Zhanga, “Scheme for generating the singlet state of three atoms trapped in distant cavities coupled by optical fibers,” Ann. Phys. 360, 228–236 (2015).
[Crossref]

Dakic, B.

B. Dakic, V. Vedral, and C. Brukner, “Necessary and sufficient condition for non-zero quantum discord,” Phys. Rev. Lett. 105, 190502 (2010).
[Crossref]

de Almeida, N. G.

J. S. Sales, W. B. Cardoso, A. T. Avelar, and N. G. de Almeida, “Dynamics of nonclassical correlations via local quantum uncertainty for atom and field interacting into a lossy cavity QED,” Physica A 443, 399–405 (2016).
[Crossref]

Duan, L.-M.

L.-M. Duan and H. J. Kimble, “Efficient engineering of multiatom entanglement through single-photon detections,” Phys. Rev. Lett. 90, 253601 (2003).
[Crossref]

Ekert, A. K.

J. I. Cirac, A. K. Ekert, S. F. Huelga, and C. Macchiavello, “Distributed quantum computation over noisy channels,” Phys. Rev. A 59, 4249–4254 (1999).
[Crossref]

Eleuch, H.

A.-B. A. Mohamed and H. Eleuch, “Quantum correlation control for two semiconductor microcavities connected by an optical fiber,” Phys. Scripta 92, 065101 (2017).
[Crossref]

E. A. Sete and H. Eleuch, “High-efficiency quantum state transfer and quantum memory using a mechanical oscillator,” Phys. Rev. A 91, 032309 (2015).
[Crossref]

A.-B. Mohamed and H. Eleuch, “Non-classical effects in cavity QED containing a nonlinear optical medium and a quantum well: Entanglement and non-Gaussanity,” Eur. Phys. J. D 69, 191 (2015).
[Crossref]

E. A. Sete, H. Eleuch, and C. H. R. Ooi, “Light-to-matter entanglement transfer in optomechanics,” J. Opt. Soc. Am. B 31, 2821–2828 (2014).
[Crossref]

E. A. Sete and H. Eleuch, “Strong squeezing and robust entanglement in cavity electromechanics,” Phys. Rev. A 89, 013841 (2014).
[Crossref]

K. Berrada, H. Eleuch, and Y. Hassouni, “Asymptotic dynamics of quantum discord in open quantum systems,” J. Phys. B 44, 145503 (2011).
[Crossref]

H. Eleuch, “Entanglement and autocorrelation function in semiconductor microcavities,” Int. J. Mod. Phys. B 24, 5653–5662 (2010).
[Crossref]

H. Eleuch, “Autocorrelation function of microcavity-emitting field in the linear regime,” Eur. Phys. J. D 48, 139–143 (2008).
[Crossref]

H. Eleuch, “Photon statistics of light in semiconductor microcavities,” J. Phys. B 41, 055502 (2008).
[Crossref]

E. Giacobino, J.-P. Karr, G. Messin, H. Eleuch, and A. Baas, “Quantum optical effects in semiconductor microcavities,” C. R. Phys. 3, 41–52 (2002).
[Crossref]

H. Eleuch, J. M. Courty, G. Messin, C. Fabre, and E. Giacobino, “Cavity QED effects in semiconductor microcavities,” J. Opt. B 1, 1–7 (1999).
[Crossref]

Fabre, C.

H. Eleuch, J. M. Courty, G. Messin, C. Fabre, and E. Giacobino, “Cavity QED effects in semiconductor microcavities,” J. Opt. B 1, 1–7 (1999).
[Crossref]

Fu, S.

S. Luo and S. Fu, “Measurement-induced nonlocality,” Phys. Rev. Lett. 106, 120401 (2011).
[Crossref]

S. Luo and S. Fu, “Global effects of quantum states induced by locally invariant measurements,” Europhys. Lett. 92, 20004 (2010).
[Crossref]

Giacobino, E.

E. Giacobino, J.-P. Karr, G. Messin, H. Eleuch, and A. Baas, “Quantum optical effects in semiconductor microcavities,” C. R. Phys. 3, 41–52 (2002).
[Crossref]

H. Eleuch, J. M. Courty, G. Messin, C. Fabre, and E. Giacobino, “Cavity QED effects in semiconductor microcavities,” J. Opt. B 1, 1–7 (1999).
[Crossref]

Girolami, D.

D. Girolami, T. Tufarelli, and G. Adesso, “Characterizing nonclassical correlations via local quantum uncertainty,” Phys. Rev. Lett. 110, 240402 (2013).
[Crossref]

Gisin, N.

N. Gisin and R. Thew, “Quantum communication,” Nat. Photonics 1, 165–171 (2007).
[Crossref]

A. Acin, N. Gisin, and L. Masanes, “From Bells theorem to secure quantum key distribution,” Phys. Rev. Lett. 97, 120405 (2006).
[Crossref]

Gu, M.

S. Clark, A. Peng, M. Gu, and S. Parkins, “Unconditional preparation of entanglement between atoms in cascaded optical cavities,” Phys. Rev. Lett. 91, 177901 (2003).
[Crossref]

Guo, Q.

S. L. Su, X. Q. Shao, Q. Guo, L. Y. Cheng, H. F. Wang, and S. Zhang, “Preparation of entanglement between atoms in spatially separated cavities via fiber loss,” Eur. Phys. J. D 69, 123 (2015).
[Crossref]

Hassan, S. S.

A.-B. A. Mohamed, A. Joshi, and S. S. Hassan, “Enhancing non-local correlations in the bipartite partitions of two qubit-system with non-mutual interaction,” Ann. Phys. 366, 32–44 (2016).
[Crossref]

A.-B. A. Mohameda, A. Joshi, and S. S. Hassan, “Bipartite non-local correlations in a double quantum dot excitonic system,” J. Phys. A 47, 335301 (2014).
[Crossref]

Hassouni, Y.

K. Berrada, H. Eleuch, and Y. Hassouni, “Asymptotic dynamics of quantum discord in open quantum systems,” J. Phys. B 44, 145503 (2011).
[Crossref]

He, Z.

Z. He, C. Yao, Q. Wang, and J. Zou, “Measuring non-Markovianity based on local quantum uncertainty,” Phys. Rev. A 90, 042101 (2014).
[Crossref]

Henderson, L.

L. Henderson and V. Vedral, “Classical, quantum and total correlations,” J. Phys. A 34, 6899–6905 (2001).
[Crossref]

Houdre, R.

R. Houdre, C. Weisbuch, R. P. Stanley, U. Oesterle, and M. Ilegems, “Nonlinear emission of semiconductor microcavities in the strong coupling regime,” Phys. Rev. Lett. 85, 2793–2796 (2000).
[Crossref]

Hua, S.

D. Y. Wanga, J. J. Wenb, C. H. Bai, S. Hua, W. X. Cui, H. F. Wanga, A. D. Zhua, and S. Zhanga, “Scheme for generating the singlet state of three atoms trapped in distant cavities coupled by optical fibers,” Ann. Phys. 360, 228–236 (2015).
[Crossref]

Huelga, S. F.

J. I. Cirac, A. K. Ekert, S. F. Huelga, and C. Macchiavello, “Distributed quantum computation over noisy channels,” Phys. Rev. A 59, 4249–4254 (1999).
[Crossref]

Ilegems, M.

R. Houdre, C. Weisbuch, R. P. Stanley, U. Oesterle, and M. Ilegems, “Nonlinear emission of semiconductor microcavities in the strong coupling regime,” Phys. Rev. Lett. 85, 2793–2796 (2000).
[Crossref]

Jeong, H.

H. Jeong, J. Lee, and M. S. Kim, “Dynamics of nonlocality for a two-mode squeezed state in a thermal environment,” Phys. Rev. A 61, 052101 (2000).
[Crossref]

Joshi, A.

A.-B. A. Mohamed, A. Joshi, and S. S. Hassan, “Enhancing non-local correlations in the bipartite partitions of two qubit-system with non-mutual interaction,” Ann. Phys. 366, 32–44 (2016).
[Crossref]

A.-B. A. Mohameda, A. Joshi, and S. S. Hassan, “Bipartite non-local correlations in a double quantum dot excitonic system,” J. Phys. A 47, 335301 (2014).
[Crossref]

Karr, J.-P.

E. Giacobino, J.-P. Karr, G. Messin, H. Eleuch, and A. Baas, “Quantum optical effects in semiconductor microcavities,” C. R. Phys. 3, 41–52 (2002).
[Crossref]

Kim, M. S.

M. Paternostro, M. S. Kim, and G. M. Palma, “Non local quantum gates: a cavity quantum electrodynamics implementation,” J. Mod. Opt. 50, 2075–2094 (2003).
[Crossref]

H. Jeong, J. Lee, and M. S. Kim, “Dynamics of nonlocality for a two-mode squeezed state in a thermal environment,” Phys. Rev. A 61, 052101 (2000).
[Crossref]

Kimble, H. J.

L.-M. Duan and H. J. Kimble, “Efficient engineering of multiatom entanglement through single-photon detections,” Phys. Rev. Lett. 90, 253601 (2003).
[Crossref]

Lee, H.-W.

J. Cho and H.-W. Lee, “Generation of atomic cluster states through the cavity input-output process,” Phys. Rev. Lett. 95, 160501 (2005).
[Crossref]

Lee, J.

H. Jeong, J. Lee, and M. S. Kim, “Dynamics of nonlocality for a two-mode squeezed state in a thermal environment,” Phys. Rev. A 61, 052101 (2000).
[Crossref]

Lin, X.

R. C. Yang, X. Lin, and X. M. Lin, “Generation of three-qutrit singlet states for three atoms trapped in separated cavities,” Opt. Commun. 338, 366–370 (2015).
[Crossref]

Lin, X. M.

R. C. Yang, X. Lin, and X. M. Lin, “Generation of three-qutrit singlet states for three atoms trapped in separated cavities,” Opt. Commun. 338, 366–370 (2015).
[Crossref]

Liu, C.-C.

C.-C. Liu and L. Ye, “Probing quantum coherence, uncertainty, steerability of quantum coherence and quantum phase transition in the spin model,” Quantum Inf. Process. 16, 138 (2017).
[Crossref]

Lo-Franco, R.

L. Mazzola, B. Bellomo, R. Lo-Franco, and G. Compagno, “Connection among entanglement, mixedness, and nonlocality in a dynamical context,” Phys. Rev. A 81, 052116 (2010).
[Crossref]

Louisell, W. H.

W. H. Louisell, Quantum Statistical Properties of Radiation (Wiley, 1973).

Luo, S.

S. Luo and S. Fu, “Measurement-induced nonlocality,” Phys. Rev. Lett. 106, 120401 (2011).
[Crossref]

S. Luo and S. Fu, “Global effects of quantum states induced by locally invariant measurements,” Europhys. Lett. 92, 20004 (2010).
[Crossref]

Macchiavello, C.

J. I. Cirac, A. K. Ekert, S. F. Huelga, and C. Macchiavello, “Distributed quantum computation over noisy channels,” Phys. Rev. A 59, 4249–4254 (1999).
[Crossref]

Mancini, S.

A. Serafini, S. Mancini, and S. Bose, “Distributed quantum computation via optical fibers,” Phys. Rev. Lett. 96, 010503 (2006).
[Crossref]

S. Mancini and S. Bose, “Ponderomotive entangling of atomic motions,” Phys. Rev. A 64, 032308 (2001).
[Crossref]

Masanes, L.

A. Acin, N. Gisin, and L. Masanes, “From Bells theorem to secure quantum key distribution,” Phys. Rev. Lett. 97, 120405 (2006).
[Crossref]

Mazzola, L.

L. Mazzola, B. Bellomo, R. Lo-Franco, and G. Compagno, “Connection among entanglement, mixedness, and nonlocality in a dynamical context,” Phys. Rev. A 81, 052116 (2010).
[Crossref]

Messin, G.

E. Giacobino, J.-P. Karr, G. Messin, H. Eleuch, and A. Baas, “Quantum optical effects in semiconductor microcavities,” C. R. Phys. 3, 41–52 (2002).
[Crossref]

H. Eleuch, J. M. Courty, G. Messin, C. Fabre, and E. Giacobino, “Cavity QED effects in semiconductor microcavities,” J. Opt. B 1, 1–7 (1999).
[Crossref]

Metwally, N.

N. Metwally, A. Al-Mannai, and M. Abdel-Aty, “Skew information for a single Cooper pair box interacting with a single cavity field,” Commun. Theor. Phys. 59, 769–772 (2013).
[Crossref]

Mirza, I. M.

I. M. Mirza, “Bi- and uni-photon entanglement in two-way cascaded fiber-coupled atomcavity systems,” Phys. Lett. A 379, 1643–1648 (2015).
[Crossref]

Mohamed, A.-B.

A.-B. Mohamed and H. Eleuch, “Non-classical effects in cavity QED containing a nonlinear optical medium and a quantum well: Entanglement and non-Gaussanity,” Eur. Phys. J. D 69, 191 (2015).
[Crossref]

Mohamed, A.-B. A.

A.-B. A. Mohamed and H. Eleuch, “Quantum correlation control for two semiconductor microcavities connected by an optical fiber,” Phys. Scripta 92, 065101 (2017).
[Crossref]

A.-B. A. Mohamed, A. Joshi, and S. S. Hassan, “Enhancing non-local correlations in the bipartite partitions of two qubit-system with non-mutual interaction,” Ann. Phys. 366, 32–44 (2016).
[Crossref]

Mohameda, A.-B. A.

A.-B. A. Mohameda, A. Joshi, and S. S. Hassan, “Bipartite non-local correlations in a double quantum dot excitonic system,” J. Phys. A 47, 335301 (2014).
[Crossref]

Nielsen, M. A.

M. A. Nielsen and I. L. Chuang, Quantum Computation and Quantum Information (Cambridge University, 2000).

Oesterle, U.

R. Houdre, C. Weisbuch, R. P. Stanley, U. Oesterle, and M. Ilegems, “Nonlinear emission of semiconductor microcavities in the strong coupling regime,” Phys. Rev. Lett. 85, 2793–2796 (2000).
[Crossref]

Ollivier, H.

H. Ollivier and W. H. Zurek, “Quantum discord: a measure of the quantumness of correlations,” Phys. Rev. Lett. 88, 017901 (2001).
[Crossref]

Ooi, C. H. R.

Palma, G. M.

M. Paternostro, M. S. Kim, and G. M. Palma, “Non local quantum gates: a cavity quantum electrodynamics implementation,” J. Mod. Opt. 50, 2075–2094 (2003).
[Crossref]

Parkins, S.

S. Clark, A. Peng, M. Gu, and S. Parkins, “Unconditional preparation of entanglement between atoms in cascaded optical cavities,” Phys. Rev. Lett. 91, 177901 (2003).
[Crossref]

Paternostro, M.

M. Paternostro, M. S. Kim, and G. M. Palma, “Non local quantum gates: a cavity quantum electrodynamics implementation,” J. Mod. Opt. 50, 2075–2094 (2003).
[Crossref]

Pellizzari, T.

T. Pellizzari, “Quantum networking with optical fibres,” Phys. Rev. Lett. 79, 5242–5245 (1997).
[Crossref]

Peng, A.

S. Clark, A. Peng, M. Gu, and S. Parkins, “Unconditional preparation of entanglement between atoms in cascaded optical cavities,” Phys. Rev. Lett. 91, 177901 (2003).
[Crossref]

Sales, J. S.

J. S. Sales, W. B. Cardoso, A. T. Avelar, and N. G. de Almeida, “Dynamics of nonclassical correlations via local quantum uncertainty for atom and field interacting into a lossy cavity QED,” Physica A 443, 399–405 (2016).
[Crossref]

Sarkar, D.

A. Sen, D. Sarkar, and A. Bhar, “Local quantum uncertainty in two-qubit separable states: a case study,” Quantum Inf. Process. 15, 233–243 (2016).
[Crossref]

Sen, A.

A. Sen, D. Sarkar, and A. Bhar, “Local quantum uncertainty in two-qubit separable states: a case study,” Quantum Inf. Process. 15, 233–243 (2016).
[Crossref]

Serafini, A.

A. Serafini, S. Mancini, and S. Bose, “Distributed quantum computation via optical fibers,” Phys. Rev. Lett. 96, 010503 (2006).
[Crossref]

Sete, E. A.

E. A. Sete and H. Eleuch, “High-efficiency quantum state transfer and quantum memory using a mechanical oscillator,” Phys. Rev. A 91, 032309 (2015).
[Crossref]

E. A. Sete and H. Eleuch, “Strong squeezing and robust entanglement in cavity electromechanics,” Phys. Rev. A 89, 013841 (2014).
[Crossref]

E. A. Sete, H. Eleuch, and C. H. R. Ooi, “Light-to-matter entanglement transfer in optomechanics,” J. Opt. Soc. Am. B 31, 2821–2828 (2014).
[Crossref]

Shao, X. Q.

S. L. Su, X. Q. Shao, Q. Guo, L. Y. Cheng, H. F. Wang, and S. Zhang, “Preparation of entanglement between atoms in spatially separated cavities via fiber loss,” Eur. Phys. J. D 69, 123 (2015).
[Crossref]

Shen, L.-T.

B. Zheng, L.-T. Shen, and M.-F. Chen, “Entanglement and quantum state transfer between two atoms trapped in two indirectly coupled cavities,” Quantum Inf. Process. 15, 2181–2191 (2016).
[Crossref]

Song, H.-S.

S.-X. Wu, J. Zhang, C.-S. Yu, and H.-S. Song, “Uncertainty-induced quantum nonlocality,” Phys. Lett. A 378, 344–347 (2014).
[Crossref]

Stanley, R. P.

R. Houdre, C. Weisbuch, R. P. Stanley, U. Oesterle, and M. Ilegems, “Nonlinear emission of semiconductor microcavities in the strong coupling regime,” Phys. Rev. Lett. 85, 2793–2796 (2000).
[Crossref]

Su, S. L.

S. L. Su, X. Q. Shao, Q. Guo, L. Y. Cheng, H. F. Wang, and S. Zhang, “Preparation of entanglement between atoms in spatially separated cavities via fiber loss,” Eur. Phys. J. D 69, 123 (2015).
[Crossref]

Thew, R.

N. Gisin and R. Thew, “Quantum communication,” Nat. Photonics 1, 165–171 (2007).
[Crossref]

Tufarelli, T.

D. Girolami, T. Tufarelli, and G. Adesso, “Characterizing nonclassical correlations via local quantum uncertainty,” Phys. Rev. Lett. 110, 240402 (2013).
[Crossref]

Vedral, V.

B. Dakic, V. Vedral, and C. Brukner, “Necessary and sufficient condition for non-zero quantum discord,” Phys. Rev. Lett. 105, 190502 (2010).
[Crossref]

L. Henderson and V. Vedral, “Classical, quantum and total correlations,” J. Phys. A 34, 6899–6905 (2001).
[Crossref]

Wang, H. F.

S. L. Su, X. Q. Shao, Q. Guo, L. Y. Cheng, H. F. Wang, and S. Zhang, “Preparation of entanglement between atoms in spatially separated cavities via fiber loss,” Eur. Phys. J. D 69, 123 (2015).
[Crossref]

Wang, Q.

Z. He, C. Yao, Q. Wang, and J. Zou, “Measuring non-Markovianity based on local quantum uncertainty,” Phys. Rev. A 90, 042101 (2014).
[Crossref]

Wanga, D. Y.

D. Y. Wanga, J. J. Wenb, C. H. Bai, S. Hua, W. X. Cui, H. F. Wanga, A. D. Zhua, and S. Zhanga, “Scheme for generating the singlet state of three atoms trapped in distant cavities coupled by optical fibers,” Ann. Phys. 360, 228–236 (2015).
[Crossref]

Wanga, H. F.

D. Y. Wanga, J. J. Wenb, C. H. Bai, S. Hua, W. X. Cui, H. F. Wanga, A. D. Zhua, and S. Zhanga, “Scheme for generating the singlet state of three atoms trapped in distant cavities coupled by optical fibers,” Ann. Phys. 360, 228–236 (2015).
[Crossref]

Weisbuch, C.

R. Houdre, C. Weisbuch, R. P. Stanley, U. Oesterle, and M. Ilegems, “Nonlinear emission of semiconductor microcavities in the strong coupling regime,” Phys. Rev. Lett. 85, 2793–2796 (2000).
[Crossref]

Wenb, J. J.

D. Y. Wanga, J. J. Wenb, C. H. Bai, S. Hua, W. X. Cui, H. F. Wanga, A. D. Zhua, and S. Zhanga, “Scheme for generating the singlet state of three atoms trapped in distant cavities coupled by optical fibers,” Ann. Phys. 360, 228–236 (2015).
[Crossref]

Wigner, E. P.

E. P. Wigner and M. M. Yanase, “Information contents of distributions,” Proc. Natl. Acad. Sci. USA 49, 910–918 (1963).
[Crossref]

Wu, S.-X.

S.-X. Wu, J. Zhang, C.-S. Yu, and H.-S. Song, “Uncertainty-induced quantum nonlocality,” Phys. Lett. A 378, 344–347 (2014).
[Crossref]

Yanase, M. M.

E. P. Wigner and M. M. Yanase, “Information contents of distributions,” Proc. Natl. Acad. Sci. USA 49, 910–918 (1963).
[Crossref]

Yang, R. C.

R. C. Yang, X. Lin, and X. M. Lin, “Generation of three-qutrit singlet states for three atoms trapped in separated cavities,” Opt. Commun. 338, 366–370 (2015).
[Crossref]

Yao, C.

Z. He, C. Yao, Q. Wang, and J. Zou, “Measuring non-Markovianity based on local quantum uncertainty,” Phys. Rev. A 90, 042101 (2014).
[Crossref]

Ye, L.

C.-C. Liu and L. Ye, “Probing quantum coherence, uncertainty, steerability of quantum coherence and quantum phase transition in the spin model,” Quantum Inf. Process. 16, 138 (2017).
[Crossref]

Yu, C.-S.

C.-S. Yu, “Quantum coherence via skew information and its polygamy,” Phys. Rev. A 95, 042337 (2017).
[Crossref]

S.-X. Wu, J. Zhang, C.-S. Yu, and H.-S. Song, “Uncertainty-induced quantum nonlocality,” Phys. Lett. A 378, 344–347 (2014).
[Crossref]

Zhang, J.

S.-X. Wu, J. Zhang, C.-S. Yu, and H.-S. Song, “Uncertainty-induced quantum nonlocality,” Phys. Lett. A 378, 344–347 (2014).
[Crossref]

Zhang, S.

S. L. Su, X. Q. Shao, Q. Guo, L. Y. Cheng, H. F. Wang, and S. Zhang, “Preparation of entanglement between atoms in spatially separated cavities via fiber loss,” Eur. Phys. J. D 69, 123 (2015).
[Crossref]

Zhanga, S.

D. Y. Wanga, J. J. Wenb, C. H. Bai, S. Hua, W. X. Cui, H. F. Wanga, A. D. Zhua, and S. Zhanga, “Scheme for generating the singlet state of three atoms trapped in distant cavities coupled by optical fibers,” Ann. Phys. 360, 228–236 (2015).
[Crossref]

Zheng, B.

B. Zheng, L.-T. Shen, and M.-F. Chen, “Entanglement and quantum state transfer between two atoms trapped in two indirectly coupled cavities,” Quantum Inf. Process. 15, 2181–2191 (2016).
[Crossref]

Zhua, A. D.

D. Y. Wanga, J. J. Wenb, C. H. Bai, S. Hua, W. X. Cui, H. F. Wanga, A. D. Zhua, and S. Zhanga, “Scheme for generating the singlet state of three atoms trapped in distant cavities coupled by optical fibers,” Ann. Phys. 360, 228–236 (2015).
[Crossref]

Zou, J.

Z. He, C. Yao, Q. Wang, and J. Zou, “Measuring non-Markovianity based on local quantum uncertainty,” Phys. Rev. A 90, 042101 (2014).
[Crossref]

Zurek, W. H.

H. Ollivier and W. H. Zurek, “Quantum discord: a measure of the quantumness of correlations,” Phys. Rev. Lett. 88, 017901 (2001).
[Crossref]

Ann. Phys. (2)

A.-B. A. Mohamed, A. Joshi, and S. S. Hassan, “Enhancing non-local correlations in the bipartite partitions of two qubit-system with non-mutual interaction,” Ann. Phys. 366, 32–44 (2016).
[Crossref]

D. Y. Wanga, J. J. Wenb, C. H. Bai, S. Hua, W. X. Cui, H. F. Wanga, A. D. Zhua, and S. Zhanga, “Scheme for generating the singlet state of three atoms trapped in distant cavities coupled by optical fibers,” Ann. Phys. 360, 228–236 (2015).
[Crossref]

C. R. Phys. (1)

E. Giacobino, J.-P. Karr, G. Messin, H. Eleuch, and A. Baas, “Quantum optical effects in semiconductor microcavities,” C. R. Phys. 3, 41–52 (2002).
[Crossref]

Commun. Theor. Phys. (1)

N. Metwally, A. Al-Mannai, and M. Abdel-Aty, “Skew information for a single Cooper pair box interacting with a single cavity field,” Commun. Theor. Phys. 59, 769–772 (2013).
[Crossref]

Eur. Phys. J. D (3)

S. L. Su, X. Q. Shao, Q. Guo, L. Y. Cheng, H. F. Wang, and S. Zhang, “Preparation of entanglement between atoms in spatially separated cavities via fiber loss,” Eur. Phys. J. D 69, 123 (2015).
[Crossref]

H. Eleuch, “Autocorrelation function of microcavity-emitting field in the linear regime,” Eur. Phys. J. D 48, 139–143 (2008).
[Crossref]

A.-B. Mohamed and H. Eleuch, “Non-classical effects in cavity QED containing a nonlinear optical medium and a quantum well: Entanglement and non-Gaussanity,” Eur. Phys. J. D 69, 191 (2015).
[Crossref]

Europhys. Lett. (1)

S. Luo and S. Fu, “Global effects of quantum states induced by locally invariant measurements,” Europhys. Lett. 92, 20004 (2010).
[Crossref]

Int. J. Mod. Phys. B (1)

H. Eleuch, “Entanglement and autocorrelation function in semiconductor microcavities,” Int. J. Mod. Phys. B 24, 5653–5662 (2010).
[Crossref]

J. Mod. Opt. (1)

M. Paternostro, M. S. Kim, and G. M. Palma, “Non local quantum gates: a cavity quantum electrodynamics implementation,” J. Mod. Opt. 50, 2075–2094 (2003).
[Crossref]

J. Opt. B (1)

H. Eleuch, J. M. Courty, G. Messin, C. Fabre, and E. Giacobino, “Cavity QED effects in semiconductor microcavities,” J. Opt. B 1, 1–7 (1999).
[Crossref]

J. Opt. Soc. Am. B (1)

J. Phys. A (3)

G. Adesso, T. R. Bromley, and M. Cianciaruso, “Measures and applications of quantum correlations,” J. Phys. A 49, 473001 (2016).
[Crossref]

L. Henderson and V. Vedral, “Classical, quantum and total correlations,” J. Phys. A 34, 6899–6905 (2001).
[Crossref]

A.-B. A. Mohameda, A. Joshi, and S. S. Hassan, “Bipartite non-local correlations in a double quantum dot excitonic system,” J. Phys. A 47, 335301 (2014).
[Crossref]

J. Phys. B (2)

K. Berrada, H. Eleuch, and Y. Hassouni, “Asymptotic dynamics of quantum discord in open quantum systems,” J. Phys. B 44, 145503 (2011).
[Crossref]

H. Eleuch, “Photon statistics of light in semiconductor microcavities,” J. Phys. B 41, 055502 (2008).
[Crossref]

Nat. Photonics (1)

N. Gisin and R. Thew, “Quantum communication,” Nat. Photonics 1, 165–171 (2007).
[Crossref]

Opt. Commun. (1)

R. C. Yang, X. Lin, and X. M. Lin, “Generation of three-qutrit singlet states for three atoms trapped in separated cavities,” Opt. Commun. 338, 366–370 (2015).
[Crossref]

Phys. Lett. A (2)

I. M. Mirza, “Bi- and uni-photon entanglement in two-way cascaded fiber-coupled atomcavity systems,” Phys. Lett. A 379, 1643–1648 (2015).
[Crossref]

S.-X. Wu, J. Zhang, C.-S. Yu, and H.-S. Song, “Uncertainty-induced quantum nonlocality,” Phys. Lett. A 378, 344–347 (2014).
[Crossref]

Phys. Rev. A (8)

C.-S. Yu, “Quantum coherence via skew information and its polygamy,” Phys. Rev. A 95, 042337 (2017).
[Crossref]

Z. He, C. Yao, Q. Wang, and J. Zou, “Measuring non-Markovianity based on local quantum uncertainty,” Phys. Rev. A 90, 042101 (2014).
[Crossref]

E. A. Sete and H. Eleuch, “High-efficiency quantum state transfer and quantum memory using a mechanical oscillator,” Phys. Rev. A 91, 032309 (2015).
[Crossref]

E. A. Sete and H. Eleuch, “Strong squeezing and robust entanglement in cavity electromechanics,” Phys. Rev. A 89, 013841 (2014).
[Crossref]

S. Mancini and S. Bose, “Ponderomotive entangling of atomic motions,” Phys. Rev. A 64, 032308 (2001).
[Crossref]

J. I. Cirac, A. K. Ekert, S. F. Huelga, and C. Macchiavello, “Distributed quantum computation over noisy channels,” Phys. Rev. A 59, 4249–4254 (1999).
[Crossref]

H. Jeong, J. Lee, and M. S. Kim, “Dynamics of nonlocality for a two-mode squeezed state in a thermal environment,” Phys. Rev. A 61, 052101 (2000).
[Crossref]

L. Mazzola, B. Bellomo, R. Lo-Franco, and G. Compagno, “Connection among entanglement, mixedness, and nonlocality in a dynamical context,” Phys. Rev. A 81, 052116 (2010).
[Crossref]

Phys. Rev. Lett. (11)

A. Acin, N. Gisin, and L. Masanes, “From Bells theorem to secure quantum key distribution,” Phys. Rev. Lett. 97, 120405 (2006).
[Crossref]

L.-M. Duan and H. J. Kimble, “Efficient engineering of multiatom entanglement through single-photon detections,” Phys. Rev. Lett. 90, 253601 (2003).
[Crossref]

J. Cho and H.-W. Lee, “Generation of atomic cluster states through the cavity input-output process,” Phys. Rev. Lett. 95, 160501 (2005).
[Crossref]

A. Serafini, S. Mancini, and S. Bose, “Distributed quantum computation via optical fibers,” Phys. Rev. Lett. 96, 010503 (2006).
[Crossref]

T. Pellizzari, “Quantum networking with optical fibres,” Phys. Rev. Lett. 79, 5242–5245 (1997).
[Crossref]

S. Clark, A. Peng, M. Gu, and S. Parkins, “Unconditional preparation of entanglement between atoms in cascaded optical cavities,” Phys. Rev. Lett. 91, 177901 (2003).
[Crossref]

D. Girolami, T. Tufarelli, and G. Adesso, “Characterizing nonclassical correlations via local quantum uncertainty,” Phys. Rev. Lett. 110, 240402 (2013).
[Crossref]

S. Luo and S. Fu, “Measurement-induced nonlocality,” Phys. Rev. Lett. 106, 120401 (2011).
[Crossref]

H. Ollivier and W. H. Zurek, “Quantum discord: a measure of the quantumness of correlations,” Phys. Rev. Lett. 88, 017901 (2001).
[Crossref]

B. Dakic, V. Vedral, and C. Brukner, “Necessary and sufficient condition for non-zero quantum discord,” Phys. Rev. Lett. 105, 190502 (2010).
[Crossref]

R. Houdre, C. Weisbuch, R. P. Stanley, U. Oesterle, and M. Ilegems, “Nonlinear emission of semiconductor microcavities in the strong coupling regime,” Phys. Rev. Lett. 85, 2793–2796 (2000).
[Crossref]

Phys. Scripta (1)

A.-B. A. Mohamed and H. Eleuch, “Quantum correlation control for two semiconductor microcavities connected by an optical fiber,” Phys. Scripta 92, 065101 (2017).
[Crossref]

Physica A (1)

J. S. Sales, W. B. Cardoso, A. T. Avelar, and N. G. de Almeida, “Dynamics of nonclassical correlations via local quantum uncertainty for atom and field interacting into a lossy cavity QED,” Physica A 443, 399–405 (2016).
[Crossref]

Physics (1)

J. S. Bell, “On the Einstein-Podolsky-Rosen paradox,” Physics 1, 195–200 (1964).

Proc. Natl. Acad. Sci. USA (1)

E. P. Wigner and M. M. Yanase, “Information contents of distributions,” Proc. Natl. Acad. Sci. USA 49, 910–918 (1963).
[Crossref]

Quantum Inf. Process. (3)

A. Sen, D. Sarkar, and A. Bhar, “Local quantum uncertainty in two-qubit separable states: a case study,” Quantum Inf. Process. 15, 233–243 (2016).
[Crossref]

C.-C. Liu and L. Ye, “Probing quantum coherence, uncertainty, steerability of quantum coherence and quantum phase transition in the spin model,” Quantum Inf. Process. 16, 138 (2017).
[Crossref]

B. Zheng, L.-T. Shen, and M.-F. Chen, “Entanglement and quantum state transfer between two atoms trapped in two indirectly coupled cavities,” Quantum Inf. Process. 15, 2181–2191 (2016).
[Crossref]

Other (2)

M. A. Nielsen and I. L. Chuang, Quantum Computation and Quantum Information (Cambridge University, 2000).

W. H. Louisell, Quantum Statistical Properties of Radiation (Wiley, 1973).

Cited By

Optica participates in Crossref's Cited-By Linking service. Citing articles from Optica Publishing Group journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1.
Fig. 1. Schematic representation of two spatially separated semiconductor QWs (A, B), where each QW is in a driven microcavity by a reservoir. Microcavities are linked by an optical fiber.
Fig. 2.
Fig. 2. For the two excitons, ρEAEB(t): L(t) (solid curves), U(t) (dash curves), Bmax(t) (dash-dot curves) and negativity (dashed curves) for |1e|1c|1f with χ=0.0 in (a) and χ=0.9 in (b). At fixed values: (λA,λB,ν,ϵ)=(1.42,1.42,1.0,103) with κi=γi=0. (c) and (d) are the same as (a) and (b), but for λB=0.42.
Fig. 3.
Fig. 3. Same as Figs. 2(a) and 2(b) but for ν=0.5 in (a) and (b), and for κi=γi=0.5 in (c) and (d).
Fig. 4.
Fig. 4. Same as Fig. 1 but for the correlated initial state: |ψ(0)cor=[|Ψ2|2e+|Ψ3|3e] with xi=18.
Fig. 5.
Fig. 5. Same as Figs. 3(a) and 3(b) but for (λA,λB,ν)=(0.2,0.2,1.45) in (a) and (b), and for κi=γi=0.2 in (c) and (d).
Fig. 6.
Fig. 6. Same as Fig. 1(a), but for the two cavities, ρCACB(t) in (a) and for (λA,λB,ν,ϵ)=(0.2,0.2,1.8,0.001) in (b). (c) and (d) are the same as (a) and (b), but for κi=γi=0.4.
Fig. 7.
Fig. 7. Same as Fig. 6 but for the correlated initial state: |ψ(0)cor=[|Ψ2|2e+|Ψ3|3e] and for (λA,λB,ν)=(1.5,1.5,0.2) for χ=0.0 in (a) and χ=0.9 in (b).

Equations (18)

Equations on this page are rendered with MathJax. Learn more.

Hint=k=A,Bχk(a^k)a^k+λk(a^k+b^k+b^k+a^k)+ϵk(a^k++a^k)+ν[o^(a^A+a^B)]+ν[o^(a^A+a^B)],
ρt=i[Hint,ρ]+i=A,Bκi(2a^iρa^ia^ia^iρρa^ia^i)+γi2(2b^iρb^ib^ib^iρρb^ib^i).
iddtρ=H^effρ(ρH^eff),
Heff=Hintii=A,Bκia^ia^i+γi2b^ib^i.
(Heff)=Hint+ii=A,Bκia^ia^i+γi2b^ib^i.
iddt|ψ(t)=H^eff|ψ(t),
|ψ(t)=l=14|Ψl|le.
|Ψ1=x1|1c|0f+x5|1c|1f+x9|2c|0f+x11|2c|1f+x13|3c0f+x15|3c|1f+x17|4c|0f+x18|4c|1f,|Ψ2=x2|1c|0f+x6|1c|1f+x14|3c|0f+x16|3c|1f,|Ψ3=x3|1c|0f+x7|1c|1f+x10|2c|0f+x12|2c|1f,|Ψ4=x4|1c|0f+x8|1c|1f.
x˙1=ϵAx13+ϵBx9,x˙2=iλBx9γ˜Bx2,x˙3=iλAx13γ˜Ax3+ϵAx14+ϵBx10,x˙4=iλAx14iλBx10(γ˜A+γ˜B)x4,x˙5=iνx9iνA13+ϵAA15+ϵBx11,x˙6=iλBx11iνx14γ˜Bx6,x˙7=iλAx15iνx10γ˜Ax7+ϵAx16+ϵBA12x˙8=iλAx16iλBx12(γ˜A+γ˜B)x8,x˙9=iλBx2iνx5κBx9iχBx9+ϵAx17+ϵBx1,x˙10=iλAx17iλBx4iνx7(κB+γ˜A)x10iχBx10+ϵBx3,x˙11=iλBx6iνx17κBx11iχBx11+ϵAx18+ϵBx5,x˙12=iλAx18iλBx8(κB+γ˜A)x12iχBx12+ϵBx7,x˙13=iλAx3iνx5κAx13iχAx13+ϵAx1+ϵBx17,x˙14=iλAx4iλBx17iνx6(κA+γ˜B)x14iχAx14+ϵAx2,x˙15=iλAx7iνx17κAx15iχAx15+ϵAx5+ϵBx18,x˙16=iλAx8iλBx18(κA+γ˜B)x16iχAx16+ϵAx6,x˙17=iλAx10iλBx14iνx15(κA+κB)x17i(χA+χB)x17+ϵAx9+ϵBx13,x˙18=iλAz12iλBx16iνx11(κA+κB)x18i(χA+χB)x18+ϵAx11+ϵBx15,
I(ρAB,KΛ)=12Tr[ρAB,KΛ]2,
LA(ρAB)=minKΛ{I(ρ,KΛ)},
L(t)=1λmax(WAB),
wij=Tr{ρAB(σiI)ρAB(σjI)},
Uc(ρ)=maxKCI(ρ,KC),
U(t)={1λmin(WAB),r=0;11rrWABrT,r0,
Bmax(t)=2λ+λ˜,
d1=[x1x5x9x11x13x15x17A18],d2=[x2x600x14x1600],d3=[x3x7x10x120000],d4=[x4x8000000].
w1=[x1x2x3x4x5x6x7x8],w2=[x90x100x110x120],w3=[x13x1400x15x1500],w4=[x17000x17000].

Metrics