Abstract

A combined approach of first-principles density-functional calculations and the systematic cluster-expansion scheme is presented. The dipole, quadrupole, and Coulomb matrix elements obtained from ab initio calculations are used as an input to the microscopic many-body theory of the excitonic optical response. To demonstrate the hybrid approach for a nontrivial semiconductor system, the near-bandgap excitonic optical absorption of rutile TiO2 is computed. Comparison with experiments yields strong evidence that the observed near-bandgap features are due to a dipole-forbidden but quadrupole-allowed 1s exciton state.

© 2016 Optical Society of America

Full Article  |  PDF Article
More Like This
Electronic structure and optical properties of PbS and PbSe quantum dots

Inuk Kang and Frank W. Wise
J. Opt. Soc. Am. B 14(7) 1632-1646 (1997)

Excitonic terahertz absorption in semiconductors with effective-mass anisotropies

P. Springer, S. W. Koch, and M. Kira
J. Opt. Soc. Am. B 33(7) C30-C38 (2016)

Coulomb effects on quantum-well luminescence spectra and radiative recombination times

Walter Hoyer, Mackillo Kira, Stephan W. Koch, Jörg Hader, and Jerome V. Moloney
J. Opt. Soc. Am. B 24(6) 1344-1353 (2007)

References

You do not have subscription access to this journal. Citation lists with outbound citation links are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Figures (4)

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Equations (53)

You do not have subscription access to this journal. Equations are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Metrics