Abstract

The medium long-term frequency stability of the integrating sphere cold atom clock was improved. During the clock operation, Rb87 atoms were cooled and manipulated using cooling light diffusely reflected by the inner surface of a microwave cavity in the clock. This light heated the cavity and caused a frequency drift from the resonant frequency of the cavity. Power fluctuations of the cooling light led to atomic density variations in the cavity’s central area, which increased the clock frequency instability through the cavity pulling effect. We overcame these limitations with appropriate solutions. A frequency stability of 3.5×1015 was achieved when the integrating time τ increased to 2×104  s.

© 2016 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Rubidium chip-scale atomic clock with improved long-term stability through light intensity optimization and compensation for laser frequency detuning

Yaolin Zhang, Wanpeng Yang, Shuangyou Zhang, and Jianye Zhao
J. Opt. Soc. Am. B 33(8) 1756-1763 (2016)

Frequency stability of a pulsed optically pumped atomic clock with narrow Ramsey linewidth

Haixiao Lin, Jianliao Deng, Jinda Lin, Song Zhang, and Yuzhu Wang
Appl. Opt. 57(12) 3056-3060 (2018)

A chip-scale atomic clock based on 87Rb with improved frequency stability

S. Knappe, P.D.D. Schwindt, V. Shah, L. Hollberg, J. Kitching, L. Liew, and J. Moreland
Opt. Express 13(4) 1249-1253 (2005)

References

You do not have subscription access to this journal. Citation lists with outbound citation links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Figures (9)

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Equations (2)

You do not have subscription access to this journal. Equations are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Metrics

You do not have subscription access to this journal. Article level metrics are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription