Abstract

Pulse trains growing from modulated continuous waves (CWs) are considered, using solutions of the Hirota equation for solitons on a finite background. The results demonstrate that pulses extracted from the maximally compressed trains can propagate, preserving their shape and forming robust arrays. The dynamics of double high-power pulse trains produced by modulated CWs in a model of optical fibers, including the Raman effect and other higher-order terms, is considered in detail as well. It is demonstrated that the double trains propagate in a robust form, with frequencies shifted by the Raman effect.

© 2015 Optical Society of America

Full Article  |  PDF Article
More Like This
Properties of soliton solutions on a cw background in optical fibers with higher-order effects

Shuqing Li, Lu Li, Zhonghao Li, and Guosheng Zhou
J. Opt. Soc. Am. B 21(12) 2089-2094 (2004)

Phase detecting of solitons by mixing with a continuous-wave background in an optical fiber

N. N. Akhmediev and S. Wabnitz
J. Opt. Soc. Am. B 9(2) 236-242 (1992)

High-power pulse, pulse pair, and pulse train generated by breathers in dispersion exponentially decreasing fiber

Heping Jia, Rongcao Yang, Jinping Tian, and Wenmei Zhang
Appl. Opt. 58(4) 912-919 (2019)

References

You do not have subscription access to this journal. Citation lists with outbound citation links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Figures (7)

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Equations (12)

You do not have subscription access to this journal. Equations are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Metrics

You do not have subscription access to this journal. Article level metrics are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription