Abstract

We investigate the feasibility of UV lasing without inversion at a wavelength of 253.7 nm utilizing interacting dark resonances in mercury vapor. Our theoretical analysis starts with radiation-damped optical Bloch equations for all relevant 13 atomic levels. These master equations are generalized by considering technical phase noise of the driving lasers. From the Doppler broadened complex susceptibility we obtain the stationary output power from semiclassical laser theory. The finite overlap of the driving Gaussian laser beams defines an ellipsoidal inhomogeneous gain distribution. Therefore, we evaluate the intra-cavity field inside a ring laser self-consistently with Fourier optics. This analysis confirms the feasibility of UV lasing and reveals its dependence on experimental parameters.

© 2014 Optical Society of America

Full Article  |  PDF Article
More Like This
Lasing without inversion in double quantum wells controlled by a dc field

Yang Zhao, Danhong Huang, and Cunkai Wu
J. Opt. Soc. Am. B 13(7) 1614-1618 (1996)

Laser amplification without population inversion on the D1 line of the Cs atom with semiconductor diode lasers

Parminder S. Bhatia, George R. Welch, and Marlan O. Scully
J. Opt. Soc. Am. B 18(11) 1587-1596 (2001)

Upconversion lasers without population inversion

Yifu Zhu
J. Opt. Soc. Am. B 11(5) 943-948 (1994)

References

You do not have subscription access to this journal. Citation lists with outbound citation links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Figures (15)

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Tables (1)

You do not have subscription access to this journal. Article tables are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Equations (67)

You do not have subscription access to this journal. Equations are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Metrics

You do not have subscription access to this journal. Article level metrics are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription