Abstract

The formation of C2 in the ablation of polymethyl methacrylate (PMMA) by 193- and 248-nm laser pulses was studied by laser-induced fluorescence. The formation of C2 is observable at a fluence at 248 nm that is well below the fluence threshold where significant etching takes place. The opposite is true at 193 nm. The velocity distribution of the diatomic form was also measured and found to approach but not exactly fit a Maxwell–Boltzmann equation. Average translational energies as high as 6 eV were recorded even at the fluence threshold for this product. The other products of the laser ablation of PMMA at 193 or 248 nm are methyl methacrylate (MMA) and a solid that is a low-molecular-weight fraction of PMMA. Although the products are the same at both wavelengths, the mix is quite different. At 193 nm, 18% of the ablated polymer is MMA, whereas at 248 nm less than 1% of the polymer appeared as MMA. A semilog plot of the mass of material removed versus the fluence shows three distinct regions. The central portion at each wavelength (80–300 mJ/cm2 at 193 nm; 600–2000 mJ/cm2 at 248 nm), which corresponds to rapid etching, is identified as ablative photodecomposition. At lower fluences, the etching efficiency falls off rapidly, indicating that there is a threshold fluence. At fluences above the range for ablative photodecomposition, the etching levels off, probably because of the secondary absorption of the incoming photons by the products. The mass of material ablated per joule of energy absorbed in the ablated volume was remarkably similar at both wavelengths. It is suggested that ablative photodecomposition involves both a one-photon process that produces MMA and low-molecular-weight polymeric fragments and a many-photon process that gives rise to products such as C2 with high translational energy. In order to establish the role of the many-photon process, samples of PMMA doped with acridine were exposed to laser pulses. The presence of as little as 2% of acridine lowers the threshold for significant etching at 248 nm from 400 to 90 mJ/cm2. The absorption characteristics of the doped polymer at this wavelength show that the acridine molecules absorb >10 photons each, whereas the absorption of the polymer changes little. The drop in the threshold energy for etching should therefore be attributed to the many-photon decomposition of the acridine and the consequent ablation of the polymer as a whole.

© 1986 Optical Society of America

Full Article  |  PDF Article
More Like This
Ablation of metal surfaces by pulsed ultraviolet lasers under ultrahigh vacuum

R. Viswanathan and Ingo Hussla
J. Opt. Soc. Am. B 3(5) 796-800 (1986)

Mechanisms of femtosecond laser-induced refractive index modification of poly(methyl methacrylate)

Alexandra Baum, Patricia J. Scully, Walter Perrie, Dun Liu, and Valerio Lucarini
J. Opt. Soc. Am. B 27(1) 107-111 (2010)

Improved laser-damage-resistant polymethyl methacrylate

R. M. O’Connell, A. B. Romberger, A. A. Shaffer, T. T. Saito, T. F. Deaton, and K. E. Seigenthaler
J. Opt. Soc. Am. B 1(6) 853-856 (1984)

References

You do not have subscription access to this journal. Citation lists with outbound citation links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Figures (11)

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Tables (1)

You do not have subscription access to this journal. Article tables are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Equations (1)

You do not have subscription access to this journal. Equations are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Metrics

You do not have subscription access to this journal. Article level metrics are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription