Abstract
We developed the theoretical model of the time-resolved thermal lens spectroscopy of a single particle with various pulse shape optical excitations. To account for the pulse shape optical excitation in the model, a heat diffusion equation of two media (the particle and liquid solvent) is solved using the numerical Laplace transform method. The model also incorporates the propagation of a diffracted Gaussian probe beam due to the thermal lens effect. Numerical results are presented to illustrate the effects of the excitation pulse shape and probe beam size on the evolution of the photothermal lens signal. The developed model is utilized for the thermal diffusivity and size extraction of a red polystyrene particle.
© 2010 Optical Society of America
Full Article |
PDF Article
More Like This
References
You do not have subscription access to this journal. Citation lists with outbound citation links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.
Contact your librarian or system administrator
or
Login to access OSA Member Subscription
Cited By
You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.
Contact your librarian or system administrator
or
Login to access OSA Member Subscription
Tables (3)
You do not have subscription access to this journal. Article tables are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.
Contact your librarian or system administrator
or
Login to access OSA Member Subscription
Equations (34)
You do not have subscription access to this journal. Equations are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.
Contact your librarian or system administrator
or
Login to access OSA Member Subscription
Metrics
You do not have subscription access to this journal. Article level metrics are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.
Contact your librarian or system administrator
or
Login to access OSA Member Subscription