Abstract

The photoionization rate and emitted electron angular distribution were computed for ground-state atomic hydrogen, in the two-photon regime (6.80–13.6 eV), for laser irradiances between 1013 and 1015 W/cm2, and for linear polarization. A direct numerical solution of the time-dependent Schrödinger equation (TDSE) was performed by a standard method and with slow laser turnon and turnoff pulse-envelope switching functions incorporated. Comparison is made with the predictions of a two-photon ionization rate formula, as described by Klarsfeld [ Lett. Nuovo Cimemto 3, 395 ( 1970)] in second-order perturbation theory, into which a resonance width and threshold shift were inserted. Under the conditions of this problem the width was dominated by the one-photon Rabi rate, and the threshold shift by the ponderomotive energy. Photoionization rates and angular distributions determined from the TDSE agreed well with the values obtained from the extended Klarsfeld formula.

© 1993 Optical Society of America

Full Article  |  PDF Article
More Like This
High-frequency two-photon ionization of helium and cesium

M. Marinescu, H. R. Sadeghpour, and A. Dalgarno
J. Opt. Soc. Am. B 10(6) 988-992 (1993)

Above-threshold ionization of atomic hydrogen

E. Karule
J. Opt. Soc. Am. B 7(4) 631-638 (1990)

References

You do not have subscription access to this journal. Citation lists with outbound citation links are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Figures (8)

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Equations (7)

You do not have subscription access to this journal. Equations are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Metrics