Expand this Topic clickable element to expand a topic
Skip to content
Optica Publishing Group

Key point calibrating and clustering for hard example mining of dense analogs in the fish-eye lens

Not Accessible

Your library or personal account may give you access

Abstract

Recent years have witnessed widespread applications of the fish-eye lens with a wide field-of-view. However, its inherent distortion poses a big challenge to the intelligent recognition of dense analogs (IRDA) by convolutional neural networks (CNN). The major bottleneck of existing CNN models lies in their limited modeling capacity for distorted objects in fish-eye images, leading to the misclassification of hard examples. To further improve the accuracy of IRDA, we propose a novel key point calibrating and clustering (KPCC) algorithm based on the hemispherical projection model. Our method can effectively correct the hard example misclassification predicted by the CNN, significantly enhancing the performance of the IRDA. The experiments show that, as a light-weight computation calibrating and stable adaptive clustering method, the KPCC increases the precision and recall rate of IRDA on the intelligent retail dataset by 8.55% and 8.07%, respectively; compared with the classic Focalloss, QFocalloss, and OHEM (online hard example mining), it can mine hard examples more sufficiently, especially in the scene of distorted dense analog detection.

© 2024 Optica Publishing Group

Full Article  |  PDF Article
More Like This
Dense stereo fish-eye images using a modified hemispherical ASW algorithm

Yakun Zhang, Haibin Li, Wenming Zhang, and Cunjun Xiao
J. Opt. Soc. Am. A 38(4) 476-487 (2021)

High precision two-step calibration method for the fish-eye camera

Bo Tu, Lu Liu, Yihui Liu, Ye Jin, and Junxiong Tang
Appl. Opt. 52(7) C37-C42 (2013)

Data availability

Data underlying the results presented in this paper are not publicly available at this time but maybe obtained from the authors upon reasonable request.

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Figures (12)

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Tables (8)

You do not have subscription access to this journal. Article tables are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Equations (3)

You do not have subscription access to this journal. Equations are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Select as filters


Select Topics Cancel
© Copyright 2024 | Optica Publishing Group. All rights reserved, including rights for text and data mining and training of artificial technologies or similar technologies.