Expand this Topic clickable element to expand a topic
Skip to content
Optica Publishing Group

Optical-cryptographic scheme based on an image self-disordering algorithm

Not Accessible

Your library or personal account may give you access

Abstract

This paper demonstrates a novel optical-cryptographic system based on a new image self-disordering algorithm (ISDA). The cryptographic stage is based on an iterative procedure using an ordering sequence from the input data to produce diffusion and confusion keys. Our system uses this approach over plaintext and optical cipher from a 2f-coherent processor working with two random phase masks. Since the keys used for encryption depend on the initial input information, the system is resistant to common attacks such as the chosen-plaintext attack (CPA) and the known-plaintext attack (KPA). In addition, since the ISDA operates the optical cipher, the 2f processor linearity is destroyed, producing an enhanced ciphertext in phase and amplitude, improving optical encryption protection. This new approach offers higher security and efficiency than other reported systems. We perform security analyses and validate the feasibility of this proposal by synthesizing an experimental keystream and performing color image encryption.

© 2023 Optica Publishing Group

Full Article  |  PDF Article
More Like This
Security analysis on an interference-based optical image encryption scheme

Y. Xiong, J. Gu, and R. Kumar
Appl. Opt. 61(30) 9045-9051 (2022)

Security analysis of a double-image encryption technique based on an asymmetric algorithm

Y. Xiong, A. He, and C. Quan
J. Opt. Soc. Am. A 35(2) 320-326 (2018)

Supplementary Material (5)

NameDescription
Visualization 1       Keystream generated by affine transformations.
Visualization 2       Self-disordering key (SDK) generation.
Visualization 3       Self-disordering algorithm over the plaintext.
Visualization 4       Self-disordering algorithm over the optical cipher amplitude.
Visualization 5       Self-disordering algorithm over the optical cipher phase.

Data availability

Data underlying the results presented in this paper are not publicly available at this time but may be obtained from the authors upon reasonable request.

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Figures (12)

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Tables (2)

You do not have subscription access to this journal. Article tables are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Equations (10)

You do not have subscription access to this journal. Equations are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Select as filters


Select Topics Cancel
© Copyright 2024 | Optica Publishing Group. All rights reserved, including rights for text and data mining and training of artificial technologies or similar technologies.