Expand this Topic clickable element to expand a topic
Skip to content
Optica Publishing Group

Collision in double-image encryption scheme based on spatial encoding and phase-truncation Fourier transforms

Not Accessible

Your library or personal account may give you access

Abstract

In this paper, the security strength of a double-image cryptosystem using spatial encoding and phase-truncation Fourier transforms (PTFTs) is evaluated. Unlike the conventional PTFT-based cryptosystem, where two random phase masks (RPMs) are used as public keys to provide enough phase constrains in the estimation, in the improved cryptosystem, the RPM generated by a random amplitude mask (RAM) is treated as an unknown parameter. Due to this fixed RAM, the number of constraints in the estimation decreases to achieve high robustness against potential iterative attacks. Moreover, instead of two phase-only masks (POMs), here the two POMs and the RAM are utilized as the private keys in the improved cryptosystem; thus, the key space of the double-image cryptosystem has been enlarged. However, we noticed that the RAM used to encode plaintexts spatially and to generate the phase encryption key is independent of the plaintexts. This could be recovered by a known pair of plaintexts and the ciphertext. Once the information of the RAM is retrieved, the phase key RPM can also be produced making the cryptosystem vulnerable. Based on this finding, new hybrid algorithms, including a known-plaintext attack and a known key attack are proposed to crack the enhanced PTFT-based cryptosystem. The information of the plaintexts can be retrieved from one POM using the proposed algorithms without any knowledge of another POM and the corresponding ciphertext. Numerical simulations have been carried out to validate the information disclosure problem still exists in the double-image cryptosystem based on spatial encoding and PTFTs.

© 2023 Optica Publishing Group

Full Article  |  PDF Article
More Like This
Hybrid plaintext attack for a cryptosystem based on interference and the phase-retrieval technique

Y. Xiong, J. Gu, and R. Kumar
Appl. Opt. 62(16) 4301-4309 (2023)

Cryptoanalysis and enhancement of a binary image encryption system based on interference

Jiahui Du, Yi Xiong, and Chenggen Quan
Appl. Opt. 60(26) 8038-8045 (2021)

Security analysis on an interference-based optical image encryption scheme

Y. Xiong, J. Gu, and R. Kumar
Appl. Opt. 61(30) 9045-9051 (2022)

Data availability

Data underlying the results presented in this paper are not publicly available at this time but may be obtained from the authors upon reasonable request.

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Figures (12)

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Equations (23)

You do not have subscription access to this journal. Equations are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Select as filters


Select Topics Cancel
© Copyright 2024 | Optica Publishing Group. All rights reserved, including rights for text and data mining and training of artificial technologies or similar technologies.