Expand this Topic clickable element to expand a topic
Skip to content
Optica Publishing Group
  • Journal of Lightwave Technology
  • Vol. 42,
  • Issue 5,
  • pp. 1626-1633
  • (2024)

Maximizing the Capacity of Graded-Index Multimode Fibers in the Linear Regime

Not Accessible

Your library or personal account may give you access

Abstract

In this article, we investigate the design of multimode fibers (MMFs) guiding over 1000 spatial modes. A trench-assisted graded-index core profile is optimized for low differential mode delay (DMD) over the C-band. The optimization results show that for a maximum DMD of 250 ps/km as much as 400 spatial modes can be supported ideally. It is shown that the optimized DMD scales with the number of modes before it reaches a plateau for a given core-cladding contrast – indicating that maximizing the core radius can allow to increase spatial cardinality without significant delay spread increase. Closed-form equations for optimal refractive-index profile parameters are introduced. The throughput supported by the optimized fibers is studied and the scaling trend with the number of guided modes is analyzed for increasing core-cladding contrast. Throughput is shown to be significantly impacted by Rayleigh scattering, macro-bend loss and coating loss, introducing a practical limit to the scaling of the number of modes – at approximately 1000 spatial modes. Here dubbed as the half-mode number, it corresponds to the number of modes beyond which the extra throughput per additional mode decays to half of that of the best mode. Finally, the impact of the fabrication margins on the DMD of the optimized profiles is analyzed.

PDF Article

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Select as filters


Select Topics Cancel
© Copyright 2024 | Optica Publishing Group. All rights reserved, including rights for text and data mining and training of artificial technologies or similar technologies.