Expand this Topic clickable element to expand a topic
Skip to content
Optica Publishing Group
  • Journal of Lightwave Technology
  • Vol. 41,
  • Issue 23,
  • pp. 7215-7222
  • (2023)

Multiband Microwave Photonic Filters With Tunability and Programmability via Optical Frequency Comb Shaping

Not Accessible

Your library or personal account may give you access

Abstract

We present the development of tunable programmable multiband microwave photonic filters with an arbitrary number of passbands, which open a new route to integrate several communication function modules into one multifunctional communication terminal. The complex coefficient multi-tap microwave photonic filters providing flexible multiband filter characteristics can be realized by programming the amplitude and phase of dual optical frequency combs via a line-by-line optical pulse shaper in an interferometric scheme. Since the microwave photonic link implemented with an electro-optic optical frequency comb offers outstanding noise characteristics, robustness, and flexibility in the filter response, we apply the combs as a multi-tap optical source in the microwave photonic filters. We experimentally implement microwave photonic filters containing four passbands with a tunable center frequency up to 43.9 GHz and programmable bandwidth of up to 3.5 GHz at 3 dB. The number of passbands is set by the number of continuous wave lasers and linear phases applied to the corresponding shaped comb windows, while the tuning and programming of passbands are implemented by changing the coefficient of linear phase and Gaussian window via optical pulse shapers.

PDF Article

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Select as filters


Select Topics Cancel
© Copyright 2024 | Optica Publishing Group. All rights reserved, including rights for text and data mining and training of artificial technologies or similar technologies.