Expand this Topic clickable element to expand a topic
Skip to content
Optica Publishing Group
  • Journal of Lightwave Technology
  • Vol. 41,
  • Issue 23,
  • pp. 7201-7214
  • (2023)

Chemical Classification by Monitoring Liquid Evaporation Using Extrinsic Fabry-Perot Interferometer With Microwave Photonics

Not Accessible

Your library or personal account may give you access

Abstract

Identification of liquids is essential in chemical analysis, safety, environmental protection, quality control, and research. A novel liquid identification system based on Microwave Photonics (MWP) measured time transient evaporation signals is investigated. An extrinsic Fabry-Perot Interferometer (EFPI) based optical probe using single-mode fiber (SMF) is proposed to monitor evaporation of different liquids. The MWP system is used to measure the optical path changes during liquid evaporation due to its high sensitivity, selectivity, and Signal-to-Noise Ratio (SNR). The measured S21 continuous wave (CW) time Magnitude and Phase signals were processed to extract features such as histogram and Fast Fourier Transform (FFT) peaks. Using features extracted from droplet evaporation time transient events, machine learning classification accurately identified chemicals in each liquid with an accuracy rate of over 99%, employing three algorithms: Decision Trees, Support Vector Machine (SVM), and K-nearest neighbors (KNN). The classification results demonstrate accurate liquid identification based on evaporation measurements by the MWP system.

PDF Article

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Select as filters


Select Topics Cancel
© Copyright 2024 | Optica Publishing Group. All rights reserved, including rights for text and data mining and training of artificial technologies or similar technologies.