Abstract

Modes in step-index fibers are often studied using a scalar model, born to the approximations allowed by the assumption of low refractive index contrast. Such approximations lead to a perfectly linear polarization in the resulting modes, among which the Bessel-like ones are attracting increasing interest for their many applications. These modes, as described by the scalar model, have a circularly symmetric irradiance. Nevertheless, in some cases, their symmetry disappears as their intensity profile exhibits angular ripples that cannot be foreseen by the scalar approach. In this paper, this effect is thoroughly analyzed.

© 2018 OAPA

PDF Article

References

  • View by:
  • |
  • |
  • |

  1. J. A. Buck, Fundamentals of Optical Fibers. New York, NY, USA: Wiley, 2004, Chs. 3 and 6.
  2. G. P. Agrawal, Fiber-Optic Communication Systems. New York, NY, USA: Wiley, 2011, Ch. 2.
  3. M. Brehler, M. Patchou, and P. M. Krummrich, “Impact of the refractive index profile on nonlinear effects in multimode fibers,” in Proc. ITG Symp. Photon. Netw., Leipzig, Germany, 2015, pp. 1–5.
  4. X. Daxhelet, L. Martineau, and J. Bures, “Influence of the fiber index profile on vectorial fiber modes and application to tapered fiber devices,” J. Lightw. Technol., vol. 23, no. 5, pp. 1874–1880, 2005.
  5. K. Z. Aghaie, V. Dangui, M. J. F. Digonnet, S. Fan, and G. S. Kino, “Classification of the core modes of Hollow-Core photonic-bandgap fibers,” IEEE J. Quantum Electron., vol. 45, no. 9, pp. 1192–1200, 2009.
  6. A. W. Snyder and J. Love, Optical Waveguide Theory.New York, NY, USA: Springer, 1983, Ch. 12.
  7. M. J. Adams, An Introduction to Optical Waveguides. New York, NY, USA: Wiley, 1981, Ch. 7.
  8. K. Okamoto, Fundamentals of Optical Waveguides, 2nd ed. Burlington, NJ, USA: Academic, 2006, Ch. 3.
  9. C. L. Chen, “Excitation of higher order modes in optical fibers with parabolic index profile,” Appl. Opt., vol. 27, pp. 2353–2356, 1988.
  10. X. Penget al., “Higher-order mode fiber enables high energy chirped-pulse amplification,” Opt. Express, vol. 21, pp. 32411–32416, 2013.
  11. P. Steinvurzel, J. Demas, B. Tai, Y. Chen, L. Yan, and S. Ramachandran, ”Broadband parametric wavelength conversion at 1 $\mu {\rm m}$ with large mode area fibers,” Opt. Lett., vol. 39, pp. 743–746, 2014.
  12. J. Demas, P. Steinvurzel, B. Tai, L. Rishøj, Y. Chen, and S. Ramachandran, “Intermodal nonlinear mixing with Bessel beams in optical fiber,” Optica, vol. 2, pp. 14–17, 2015.
  13. L. Rishøj, G. Prabhakar, J. Demas, and S. Ramachandran, “30 nJ, 50 fs All-Fiber Source at 1300 nm Using Soliton Shifting in LMA HOM Fiber,” in Proc. Conf. Lasers Electro-Optics, 2016, pp. 1–2.
  14. S. Ramachandran, J. M. Fini, M. Mermelstein, J. W. Nicholson, S. Ghalmi, and M. F. Yan, “Ultra-large effective-area, higher-order mode fibers: a new strategy for high-power lasers,” Laser Photon. Rev., vol. 2, pp. 429–448, 2008.
  15. S. M. Israelsen, L. S. Rishøj, and K. Rottwitt, “Break up of the azimuthal symmetry of higher order fiber modes,” Opt. Express, vol. 22, no. 10, pp. 11861–11868, 2014.
  16. E. Snitzer, “Cylindrical dielectric waveguide modes,” J. Opt. Soc. Amer., vol. 51, pp. 491–498, 1961.
  17. A. W. Snyder, “Excitation and Scattering of Modes on a Dielectric or Optical Fiber,” IEEE Trans. Microw. Theory Techn., vol. 17, no. 12, pp. 1138–1144, 1969.

2015 (1)

2014 (2)

2013 (1)

2009 (1)

K. Z. Aghaie, V. Dangui, M. J. F. Digonnet, S. Fan, and G. S. Kino, “Classification of the core modes of Hollow-Core photonic-bandgap fibers,” IEEE J. Quantum Electron., vol. 45, no. 9, pp. 1192–1200, 2009.

2008 (1)

S. Ramachandran, J. M. Fini, M. Mermelstein, J. W. Nicholson, S. Ghalmi, and M. F. Yan, “Ultra-large effective-area, higher-order mode fibers: a new strategy for high-power lasers,” Laser Photon. Rev., vol. 2, pp. 429–448, 2008.

2005 (1)

X. Daxhelet, L. Martineau, and J. Bures, “Influence of the fiber index profile on vectorial fiber modes and application to tapered fiber devices,” J. Lightw. Technol., vol. 23, no. 5, pp. 1874–1880, 2005.

1988 (1)

1969 (1)

A. W. Snyder, “Excitation and Scattering of Modes on a Dielectric or Optical Fiber,” IEEE Trans. Microw. Theory Techn., vol. 17, no. 12, pp. 1138–1144, 1969.

1961 (1)

E. Snitzer, “Cylindrical dielectric waveguide modes,” J. Opt. Soc. Amer., vol. 51, pp. 491–498, 1961.

Adams, M. J.

M. J. Adams, An Introduction to Optical Waveguides. New York, NY, USA: Wiley, 1981, Ch. 7.

Aghaie, K. Z.

K. Z. Aghaie, V. Dangui, M. J. F. Digonnet, S. Fan, and G. S. Kino, “Classification of the core modes of Hollow-Core photonic-bandgap fibers,” IEEE J. Quantum Electron., vol. 45, no. 9, pp. 1192–1200, 2009.

Agrawal, G. P.

G. P. Agrawal, Fiber-Optic Communication Systems. New York, NY, USA: Wiley, 2011, Ch. 2.

Brehler, M.

M. Brehler, M. Patchou, and P. M. Krummrich, “Impact of the refractive index profile on nonlinear effects in multimode fibers,” in Proc. ITG Symp. Photon. Netw., Leipzig, Germany, 2015, pp. 1–5.

Buck, J. A.

J. A. Buck, Fundamentals of Optical Fibers. New York, NY, USA: Wiley, 2004, Chs. 3 and 6.

Bures, J.

X. Daxhelet, L. Martineau, and J. Bures, “Influence of the fiber index profile on vectorial fiber modes and application to tapered fiber devices,” J. Lightw. Technol., vol. 23, no. 5, pp. 1874–1880, 2005.

Chen, C. L.

Chen, Y.

Dangui, V.

K. Z. Aghaie, V. Dangui, M. J. F. Digonnet, S. Fan, and G. S. Kino, “Classification of the core modes of Hollow-Core photonic-bandgap fibers,” IEEE J. Quantum Electron., vol. 45, no. 9, pp. 1192–1200, 2009.

Daxhelet, X.

X. Daxhelet, L. Martineau, and J. Bures, “Influence of the fiber index profile on vectorial fiber modes and application to tapered fiber devices,” J. Lightw. Technol., vol. 23, no. 5, pp. 1874–1880, 2005.

Demas, J.

Digonnet, M. J. F.

K. Z. Aghaie, V. Dangui, M. J. F. Digonnet, S. Fan, and G. S. Kino, “Classification of the core modes of Hollow-Core photonic-bandgap fibers,” IEEE J. Quantum Electron., vol. 45, no. 9, pp. 1192–1200, 2009.

Fan, S.

K. Z. Aghaie, V. Dangui, M. J. F. Digonnet, S. Fan, and G. S. Kino, “Classification of the core modes of Hollow-Core photonic-bandgap fibers,” IEEE J. Quantum Electron., vol. 45, no. 9, pp. 1192–1200, 2009.

Fini, J. M.

S. Ramachandran, J. M. Fini, M. Mermelstein, J. W. Nicholson, S. Ghalmi, and M. F. Yan, “Ultra-large effective-area, higher-order mode fibers: a new strategy for high-power lasers,” Laser Photon. Rev., vol. 2, pp. 429–448, 2008.

Ghalmi, S.

S. Ramachandran, J. M. Fini, M. Mermelstein, J. W. Nicholson, S. Ghalmi, and M. F. Yan, “Ultra-large effective-area, higher-order mode fibers: a new strategy for high-power lasers,” Laser Photon. Rev., vol. 2, pp. 429–448, 2008.

Israelsen, S. M.

Kino, G. S.

K. Z. Aghaie, V. Dangui, M. J. F. Digonnet, S. Fan, and G. S. Kino, “Classification of the core modes of Hollow-Core photonic-bandgap fibers,” IEEE J. Quantum Electron., vol. 45, no. 9, pp. 1192–1200, 2009.

Krummrich, P. M.

M. Brehler, M. Patchou, and P. M. Krummrich, “Impact of the refractive index profile on nonlinear effects in multimode fibers,” in Proc. ITG Symp. Photon. Netw., Leipzig, Germany, 2015, pp. 1–5.

Love, J.

A. W. Snyder and J. Love, Optical Waveguide Theory.New York, NY, USA: Springer, 1983, Ch. 12.

Martineau, L.

X. Daxhelet, L. Martineau, and J. Bures, “Influence of the fiber index profile on vectorial fiber modes and application to tapered fiber devices,” J. Lightw. Technol., vol. 23, no. 5, pp. 1874–1880, 2005.

Mermelstein, M.

S. Ramachandran, J. M. Fini, M. Mermelstein, J. W. Nicholson, S. Ghalmi, and M. F. Yan, “Ultra-large effective-area, higher-order mode fibers: a new strategy for high-power lasers,” Laser Photon. Rev., vol. 2, pp. 429–448, 2008.

Nicholson, J. W.

S. Ramachandran, J. M. Fini, M. Mermelstein, J. W. Nicholson, S. Ghalmi, and M. F. Yan, “Ultra-large effective-area, higher-order mode fibers: a new strategy for high-power lasers,” Laser Photon. Rev., vol. 2, pp. 429–448, 2008.

Okamoto, K.

K. Okamoto, Fundamentals of Optical Waveguides, 2nd ed. Burlington, NJ, USA: Academic, 2006, Ch. 3.

Patchou, M.

M. Brehler, M. Patchou, and P. M. Krummrich, “Impact of the refractive index profile on nonlinear effects in multimode fibers,” in Proc. ITG Symp. Photon. Netw., Leipzig, Germany, 2015, pp. 1–5.

Peng, X.

Prabhakar, G.

L. Rishøj, G. Prabhakar, J. Demas, and S. Ramachandran, “30 nJ, 50 fs All-Fiber Source at 1300 nm Using Soliton Shifting in LMA HOM Fiber,” in Proc. Conf. Lasers Electro-Optics, 2016, pp. 1–2.

Ramachandran, S.

J. Demas, P. Steinvurzel, B. Tai, L. Rishøj, Y. Chen, and S. Ramachandran, “Intermodal nonlinear mixing with Bessel beams in optical fiber,” Optica, vol. 2, pp. 14–17, 2015.

P. Steinvurzel, J. Demas, B. Tai, Y. Chen, L. Yan, and S. Ramachandran, ”Broadband parametric wavelength conversion at 1 $\mu {\rm m}$ with large mode area fibers,” Opt. Lett., vol. 39, pp. 743–746, 2014.

S. Ramachandran, J. M. Fini, M. Mermelstein, J. W. Nicholson, S. Ghalmi, and M. F. Yan, “Ultra-large effective-area, higher-order mode fibers: a new strategy for high-power lasers,” Laser Photon. Rev., vol. 2, pp. 429–448, 2008.

L. Rishøj, G. Prabhakar, J. Demas, and S. Ramachandran, “30 nJ, 50 fs All-Fiber Source at 1300 nm Using Soliton Shifting in LMA HOM Fiber,” in Proc. Conf. Lasers Electro-Optics, 2016, pp. 1–2.

Rishøj, L.

J. Demas, P. Steinvurzel, B. Tai, L. Rishøj, Y. Chen, and S. Ramachandran, “Intermodal nonlinear mixing with Bessel beams in optical fiber,” Optica, vol. 2, pp. 14–17, 2015.

L. Rishøj, G. Prabhakar, J. Demas, and S. Ramachandran, “30 nJ, 50 fs All-Fiber Source at 1300 nm Using Soliton Shifting in LMA HOM Fiber,” in Proc. Conf. Lasers Electro-Optics, 2016, pp. 1–2.

Rishøj, L. S.

Rottwitt, K.

Snitzer, E.

E. Snitzer, “Cylindrical dielectric waveguide modes,” J. Opt. Soc. Amer., vol. 51, pp. 491–498, 1961.

Snyder, A. W.

A. W. Snyder, “Excitation and Scattering of Modes on a Dielectric or Optical Fiber,” IEEE Trans. Microw. Theory Techn., vol. 17, no. 12, pp. 1138–1144, 1969.

A. W. Snyder and J. Love, Optical Waveguide Theory.New York, NY, USA: Springer, 1983, Ch. 12.

Steinvurzel, P.

Tai, B.

Yan, L.

Yan, M. F.

S. Ramachandran, J. M. Fini, M. Mermelstein, J. W. Nicholson, S. Ghalmi, and M. F. Yan, “Ultra-large effective-area, higher-order mode fibers: a new strategy for high-power lasers,” Laser Photon. Rev., vol. 2, pp. 429–448, 2008.

Appl. Opt. (1)

IEEE J. Quantum Electron. (1)

K. Z. Aghaie, V. Dangui, M. J. F. Digonnet, S. Fan, and G. S. Kino, “Classification of the core modes of Hollow-Core photonic-bandgap fibers,” IEEE J. Quantum Electron., vol. 45, no. 9, pp. 1192–1200, 2009.

IEEE Trans. Microw. Theory Techn. (1)

A. W. Snyder, “Excitation and Scattering of Modes on a Dielectric or Optical Fiber,” IEEE Trans. Microw. Theory Techn., vol. 17, no. 12, pp. 1138–1144, 1969.

J. Lightw. Technol. (1)

X. Daxhelet, L. Martineau, and J. Bures, “Influence of the fiber index profile on vectorial fiber modes and application to tapered fiber devices,” J. Lightw. Technol., vol. 23, no. 5, pp. 1874–1880, 2005.

J. Opt. Soc. Amer. (1)

E. Snitzer, “Cylindrical dielectric waveguide modes,” J. Opt. Soc. Amer., vol. 51, pp. 491–498, 1961.

Laser Photon. Rev. (1)

S. Ramachandran, J. M. Fini, M. Mermelstein, J. W. Nicholson, S. Ghalmi, and M. F. Yan, “Ultra-large effective-area, higher-order mode fibers: a new strategy for high-power lasers,” Laser Photon. Rev., vol. 2, pp. 429–448, 2008.

Opt. Express (2)

Opt. Lett. (1)

Optica (1)

Other (7)

L. Rishøj, G. Prabhakar, J. Demas, and S. Ramachandran, “30 nJ, 50 fs All-Fiber Source at 1300 nm Using Soliton Shifting in LMA HOM Fiber,” in Proc. Conf. Lasers Electro-Optics, 2016, pp. 1–2.

A. W. Snyder and J. Love, Optical Waveguide Theory.New York, NY, USA: Springer, 1983, Ch. 12.

M. J. Adams, An Introduction to Optical Waveguides. New York, NY, USA: Wiley, 1981, Ch. 7.

K. Okamoto, Fundamentals of Optical Waveguides, 2nd ed. Burlington, NJ, USA: Academic, 2006, Ch. 3.

J. A. Buck, Fundamentals of Optical Fibers. New York, NY, USA: Wiley, 2004, Chs. 3 and 6.

G. P. Agrawal, Fiber-Optic Communication Systems. New York, NY, USA: Wiley, 2011, Ch. 2.

M. Brehler, M. Patchou, and P. M. Krummrich, “Impact of the refractive index profile on nonlinear effects in multimode fibers,” in Proc. ITG Symp. Photon. Netw., Leipzig, Germany, 2015, pp. 1–5.

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.