Abstract

Highly dispersive components enable photonic-integrated circuits for ultrafast optical pulse processing. This paper presents the design of an InP device with resonant giant group velocity dispersion. The waveguides have a dual layer, dual width geometry that enables tailoring of the group velocity resonance wavelength. By cascading sections with different resonance wavelengths we show how constant group velocity dispersion can be achieved over a 50-nm wavelength range. Depending on which one of two super modes is excited in this device, the dispersion can be either normal or anomalous with values of $-$ 23200 ps/(nm $\cdot$ km) or 8200 ps/(nm $\cdot$ km), respectively. Mode converters with $>{90}{\%}$ efficiency are designed to facilitate selective excitation of one or the other mode. The complete device is expected to be compatible with existing active/passive photonic integration technology in the InP/InGaAsP material system that should allow the creation of monolithic ultrafast optical pulse processing systems.

© 2017 OAPA

PDF Article

References

  • View by:
  • |
  • |
  • |

  1. O. Wada, “Femtosecond all-optical devices for ultrafast communication and signal processing,” New J. Phys., vol. 6, pp. 183–183,  2004. [Online]. Available: http://dx.doi.org/10.1088/1367-2630/6/1/183
  2. W. Min, C. W. Freudiger, S. Lu, and X. S. Xie, “Coherent nonlinear optical imaging: Beyond fluorescence microscopy,” Annu. Rev. Phys. Chem., vol. 62, no. 1, pp. 507–530,  2011. [Online]. Available: http://dx.doi.org/10.1146/annurev.physchem.012809.103512
  3. J. Hodgkinson and R. P. Tatam, “Optical gas sensing: A review,” Meas. Sci. Technol., vol. 24, no. 1,  2012, Art. no. . [Online]. Available: http://dx.doi.org/10.1088/0957-0233/24/1/012004
  4. R. Stoian, M. Boyle, A. Thoss, A. Rosenfeld, G. Korn, and I. Hertel, “Dynamic temporal pulse shaping in advanced ultrafast laser material processing,” Appl. Phys. A, vol. 77, no. 2, pp. 265–269, 2003. [Online]. Available: http://link.springer.com/article/10.1007/s00339-003-2112-x
  5. M. A. Foster, R. Salem, D. F. Geraghty, A. C. Turner-Foster, M. Lipson, and A. L. Gaeta, “Silicon-chip-based ultrafast optical oscilloscope,” Nature, vol. 456, no. 7218, pp. 81–84,  2008. [Online]. Available: http://dx.doi.org/10.1038/nature07430
  6. A. Pasquaziet al., “Sub-picosecond phase-sensitive optical pulse characterization on a chip,” Nature Photon., vol. 5, no. 10, pp. 618–623,  2011. [Online]. Available: http://dx.doi.org/10.1038/nphoton.2011.199
  7. D. Strickland and G. Mourou, “Compression of amplified chirped optical pulses,” Opt. Commun., vol. 56, no. 3, pp. 219–221,  1985. [Online]. Available: http://dx.doi.org/10.1016/0030-4018(85)90120-8
  8. K. Kim, S. Lee, and P. Delfyett, “1.4kW high peak power generation from an all semiconductor mode-locked master oscillator power amplifier system based on extreme chirped pulse amplification(x-cpa),” Opt. Express, vol. 13, no. 12, pp. 4600–4606,  2005. [Online]. Available: http://www.opticsexpress.org/abstract.cfm?URI=oe-13-12-4600
  9. L. Zhanget al., “On-chip two-octave supercontinuum generation by enhancing self-steepening of optical pulses,” Opt. Express, vol. 19, no. 12, pp. 11584–11590,  2011. [Online]. Available: http://dx.doi.org/10.1364/OE.19.011584
  10. L. Zhang, Q. Lin, Y. Yue, Y. Yan, R. G. Beausoleil, and A. E. Willner, “Silicon waveguide with four zero-dispersion wavelengths and its application in on-chip octave-spanning supercontinuum generation,” Opt. Express, vol. 20, no. 2, pp. 1685–1690,  2012. [Online]. Available: http://dx.doi.org/10.1364/OE.20.001685
  11. R. Halir, Y. Okawachi, J. S. Levy, M. A. Foster, M. Lipson, and A. L. Gaeta, “Ultrabroadband supercontinuum generation in a CMOS-compatible platform,” Opt. Lett., vol. 37, no. 10, pp. 1685–1687,  2012. [Online]. Available: http://dx.doi.org/10.1364/OL.37.001685
  12. R. Soref, “Optical dispersion technique for time-delay beam steering,” Appl. Opt., vol. 31, no. 35, pp. 7395–7397,  1992. [Online]. Available: http://dx.doi.org/10.1364/AO.31.007395
  13. M. J. R. Hecket al., “Design, fabrication and characterization of an InP-based tunable integrated optical pulse shaper,” vol. 44, no. 4, pp. 370–377,  2008. [Online]. Available: http://dx.doi.org/10.1109/JQE.2007.914304
  14. V. Tolstikhinet al., “Monolithically integrated optical channel monitor for DWDM transmission systems,” J. Lightw. Technol. vol. 22, no. 1, pp. 146–153,  2004. [Online]. Available: http://dx.doi.org/10.1109/JLT.2003.822164
  15. N. Kikuchiet al., “Monolithically integrated 100-channel WDM channel selector employing low-crosstalk AWG,” IEEE Photon. Technol. Lett. vol. 16, no. 11, pp. 2481–2483,  2004. [Online]. Available: http://dx.doi.org/10.1109/LPT.2004.835195
  16. A. C. Turneret al., “Tailored anomalous group-velocity dispersion in silicon channel waveguides,” Opt. Express, vol. 14, no. 10, pp. 4357–4362,  2006. [Online]. Available: http://www.opticsexpress.org/abstract.cfm?URI=oe-14-10-4357
  17. U. Peschel, T. Peschel, and F. Lederer, “A compact device for highly efficient dispersion compensation in fiber transmission,” Appl. Phys. Lett., vol. 67, no. 15, pp. 2111–2113, 1995. [Online]. Available: http://dx.doi.org/10.1063/1.114736
  18. Y. Lee, “Pulse compression using coupled-waveguide structures as highly dispersive elements,” Appl. Phys. Lett., vol. 73, no. 19, 1998, Art. no. . [Online]. Available: http://dx.doi.org/10.1063/1.122568
  19. Y. Lee and A. Heberle, “Observation of enhanced group velocity dispersion in coupled waveguide structures,” J. Lightw. Technol. vol. 17, no. 6, pp. 1049–1055,  1999. [Online]. Available: http://dx.doi.org/10.1109/50.769307
  20. Y. Lee, “A semiconductor coupled-waveguide structure as a dispersion compensator,” Jpn. J. Appl. Phys., vol. 39, no. 3A, pp. 1140–1145,  2000. [Online]. Available: http://dx.doi.org/10.1143/JJAP.39.1140
  21. Y. Lee, “A study on asymmetric coupled waveguides as compact dispersion compensators,” Opt. Quantum Electron., vol. 33, no. 7/10, pp. 767–774, 2001. [Online]. Available: http://dx.doi.org/10.1023/A:1017535919563
  22. Y. Lee, K. Hosomi, H. Uchiyama, T. Katsuyama, S. Kominami, and T. Mishima, “Applying a mode selector to improve the pulse-compression performance of asymmetric-coupled-waveguide-based dispersion compensators,” Opt. Rev., vol. 10, no. 1, pp. 38–42,  2003. [Online]. Available: http://dx.doi.org/10.1007/s10043-003-0038-3
  23. Y. Lee, T. Shiota, A. Takei, T. Taniguchi, and H. Uchiyama, “Semiconductor dispersion compensator based on two vertically coupled asymmetric ridge waveguides,” Jpn. J. Appl. Phys., vol. 43, no. 10, pp. 7036–7041,  2004. [Online]. Available: http://dx.doi.org/10.1143/JJAP.43.7036
  24. Y. Lee, A. Takei, T. Taniguchi, and H. Uchiyama, “Temperature tuning of dispersion compensation using semiconductor asymmetric coupled waveguides,” J. Appl. Phys., vol. 98, no. 11, 2005, Art. no. . [Online]. Available: http://dx.doi.org/10.1063/1.2136417
  25. L. Zhang, Y. Yue, Y. Xiao-Li, R. G. Beausoleil, and A. E. Willner, “Highly dispersive slot waveguides,” Opt. Express, vol. 17, no. 9, pp. 7095–7101, 2009. [Online]. Available: http://dx.doi.org/10.1364/OE.17.007095
  26. J. Kjellman, R. Stabile, and K. Williams, “Dual width waveguides for all-integrated giant group velocity dispersion,” in Proc. 20th Annu. Symp. IEEE Photon. Benelux Chapter, 2015, vol. 26, pp. 39–42.
  27. M. Smitet al., “An introduction to InP-based generic integration technology,” Semicond. Sci. Technol., vol. 29, no. 8, 2014, Art. no. . [Online]. Available: http://dx.doi.org/10.1088/0268-1242/29/8/083001
  28. Photon Design, “Fimmwave and Fimmprop,” Photon Design, 2015, version 6.2.2.
  29. J.-P. Weber, “Optimization of the carrier-induced effective index change in InGaAsP waveguides-application to tunable bragg filters,” IEEE J. Quantum Electron. vol. 30, no. 8, pp. 1801–1816, 1994.
  30. S. Adachi, “Refractive indices of III–V compounds: Key properties of InGaAsP relevant to device design,” J. Appl. Phys., vol. 53, no. 8, 1982, Art. no. . [Online]. Available: http://dx.doi.org/10.1063/1.331425
  31. D. D’Agostinoet al., “Low-loss passive waveguides in a generic InP foundry process via local diffusion of zinc,” Opt. Express, vol. 23, no. 19, pp. 25143–25157,  2015. [Online]. Available: http://dx.doi.org/10.1364/OE.23.025143
  32. F. P. Payne and J. P. R. Lacey, “A theoretical analysis of scattering loss from planar optical waveguides,” Opt. Quantum Electron., vol. 26, no. 10, pp. 977–986,  1994.

2015 (2)

2014 (1)

M. Smitet al., “An introduction to InP-based generic integration technology,” Semicond. Sci. Technol., vol. 29, no. 8, 2014, Art. no. . [Online]. Available: http://dx.doi.org/10.1088/0268-1242/29/8/083001

2012 (3)

2011 (3)

W. Min, C. W. Freudiger, S. Lu, and X. S. Xie, “Coherent nonlinear optical imaging: Beyond fluorescence microscopy,” Annu. Rev. Phys. Chem., vol. 62, no. 1, pp. 507–530,  2011. [Online]. Available: http://dx.doi.org/10.1146/annurev.physchem.012809.103512

A. Pasquaziet al., “Sub-picosecond phase-sensitive optical pulse characterization on a chip,” Nature Photon., vol. 5, no. 10, pp. 618–623,  2011. [Online]. Available: http://dx.doi.org/10.1038/nphoton.2011.199

L. Zhanget al., “On-chip two-octave supercontinuum generation by enhancing self-steepening of optical pulses,” Opt. Express, vol. 19, no. 12, pp. 11584–11590,  2011. [Online]. Available: http://dx.doi.org/10.1364/OE.19.011584

2009 (1)

2008 (2)

M. A. Foster, R. Salem, D. F. Geraghty, A. C. Turner-Foster, M. Lipson, and A. L. Gaeta, “Silicon-chip-based ultrafast optical oscilloscope,” Nature, vol. 456, no. 7218, pp. 81–84,  2008. [Online]. Available: http://dx.doi.org/10.1038/nature07430

M. J. R. Hecket al., “Design, fabrication and characterization of an InP-based tunable integrated optical pulse shaper,” vol. 44, no. 4, pp. 370–377,  2008. [Online]. Available: http://dx.doi.org/10.1109/JQE.2007.914304

2006 (1)

2005 (2)

K. Kim, S. Lee, and P. Delfyett, “1.4kW high peak power generation from an all semiconductor mode-locked master oscillator power amplifier system based on extreme chirped pulse amplification(x-cpa),” Opt. Express, vol. 13, no. 12, pp. 4600–4606,  2005. [Online]. Available: http://www.opticsexpress.org/abstract.cfm?URI=oe-13-12-4600

Y. Lee, A. Takei, T. Taniguchi, and H. Uchiyama, “Temperature tuning of dispersion compensation using semiconductor asymmetric coupled waveguides,” J. Appl. Phys., vol. 98, no. 11, 2005, Art. no. . [Online]. Available: http://dx.doi.org/10.1063/1.2136417

2004 (4)

V. Tolstikhinet al., “Monolithically integrated optical channel monitor for DWDM transmission systems,” J. Lightw. Technol. vol. 22, no. 1, pp. 146–153,  2004. [Online]. Available: http://dx.doi.org/10.1109/JLT.2003.822164

N. Kikuchiet al., “Monolithically integrated 100-channel WDM channel selector employing low-crosstalk AWG,” IEEE Photon. Technol. Lett. vol. 16, no. 11, pp. 2481–2483,  2004. [Online]. Available: http://dx.doi.org/10.1109/LPT.2004.835195

Y. Lee, T. Shiota, A. Takei, T. Taniguchi, and H. Uchiyama, “Semiconductor dispersion compensator based on two vertically coupled asymmetric ridge waveguides,” Jpn. J. Appl. Phys., vol. 43, no. 10, pp. 7036–7041,  2004. [Online]. Available: http://dx.doi.org/10.1143/JJAP.43.7036

O. Wada, “Femtosecond all-optical devices for ultrafast communication and signal processing,” New J. Phys., vol. 6, pp. 183–183,  2004. [Online]. Available: http://dx.doi.org/10.1088/1367-2630/6/1/183

2003 (2)

R. Stoian, M. Boyle, A. Thoss, A. Rosenfeld, G. Korn, and I. Hertel, “Dynamic temporal pulse shaping in advanced ultrafast laser material processing,” Appl. Phys. A, vol. 77, no. 2, pp. 265–269, 2003. [Online]. Available: http://link.springer.com/article/10.1007/s00339-003-2112-x

Y. Lee, K. Hosomi, H. Uchiyama, T. Katsuyama, S. Kominami, and T. Mishima, “Applying a mode selector to improve the pulse-compression performance of asymmetric-coupled-waveguide-based dispersion compensators,” Opt. Rev., vol. 10, no. 1, pp. 38–42,  2003. [Online]. Available: http://dx.doi.org/10.1007/s10043-003-0038-3

2001 (1)

Y. Lee, “A study on asymmetric coupled waveguides as compact dispersion compensators,” Opt. Quantum Electron., vol. 33, no. 7/10, pp. 767–774, 2001. [Online]. Available: http://dx.doi.org/10.1023/A:1017535919563

2000 (1)

Y. Lee, “A semiconductor coupled-waveguide structure as a dispersion compensator,” Jpn. J. Appl. Phys., vol. 39, no. 3A, pp. 1140–1145,  2000. [Online]. Available: http://dx.doi.org/10.1143/JJAP.39.1140

1999 (1)

Y. Lee and A. Heberle, “Observation of enhanced group velocity dispersion in coupled waveguide structures,” J. Lightw. Technol. vol. 17, no. 6, pp. 1049–1055,  1999. [Online]. Available: http://dx.doi.org/10.1109/50.769307

1998 (1)

Y. Lee, “Pulse compression using coupled-waveguide structures as highly dispersive elements,” Appl. Phys. Lett., vol. 73, no. 19, 1998, Art. no. . [Online]. Available: http://dx.doi.org/10.1063/1.122568

1995 (1)

U. Peschel, T. Peschel, and F. Lederer, “A compact device for highly efficient dispersion compensation in fiber transmission,” Appl. Phys. Lett., vol. 67, no. 15, pp. 2111–2113, 1995. [Online]. Available: http://dx.doi.org/10.1063/1.114736

1994 (2)

J.-P. Weber, “Optimization of the carrier-induced effective index change in InGaAsP waveguides-application to tunable bragg filters,” IEEE J. Quantum Electron. vol. 30, no. 8, pp. 1801–1816, 1994.

F. P. Payne and J. P. R. Lacey, “A theoretical analysis of scattering loss from planar optical waveguides,” Opt. Quantum Electron., vol. 26, no. 10, pp. 977–986,  1994.

1992 (1)

1985 (1)

D. Strickland and G. Mourou, “Compression of amplified chirped optical pulses,” Opt. Commun., vol. 56, no. 3, pp. 219–221,  1985. [Online]. Available: http://dx.doi.org/10.1016/0030-4018(85)90120-8

1982 (1)

S. Adachi, “Refractive indices of III–V compounds: Key properties of InGaAsP relevant to device design,” J. Appl. Phys., vol. 53, no. 8, 1982, Art. no. . [Online]. Available: http://dx.doi.org/10.1063/1.331425

Adachi, S.

S. Adachi, “Refractive indices of III–V compounds: Key properties of InGaAsP relevant to device design,” J. Appl. Phys., vol. 53, no. 8, 1982, Art. no. . [Online]. Available: http://dx.doi.org/10.1063/1.331425

Beausoleil, R. G.

Boyle, M.

R. Stoian, M. Boyle, A. Thoss, A. Rosenfeld, G. Korn, and I. Hertel, “Dynamic temporal pulse shaping in advanced ultrafast laser material processing,” Appl. Phys. A, vol. 77, no. 2, pp. 265–269, 2003. [Online]. Available: http://link.springer.com/article/10.1007/s00339-003-2112-x

D’Agostino, D.

Delfyett, P.

Foster, M. A.

R. Halir, Y. Okawachi, J. S. Levy, M. A. Foster, M. Lipson, and A. L. Gaeta, “Ultrabroadband supercontinuum generation in a CMOS-compatible platform,” Opt. Lett., vol. 37, no. 10, pp. 1685–1687,  2012. [Online]. Available: http://dx.doi.org/10.1364/OL.37.001685

M. A. Foster, R. Salem, D. F. Geraghty, A. C. Turner-Foster, M. Lipson, and A. L. Gaeta, “Silicon-chip-based ultrafast optical oscilloscope,” Nature, vol. 456, no. 7218, pp. 81–84,  2008. [Online]. Available: http://dx.doi.org/10.1038/nature07430

Freudiger, C. W.

W. Min, C. W. Freudiger, S. Lu, and X. S. Xie, “Coherent nonlinear optical imaging: Beyond fluorescence microscopy,” Annu. Rev. Phys. Chem., vol. 62, no. 1, pp. 507–530,  2011. [Online]. Available: http://dx.doi.org/10.1146/annurev.physchem.012809.103512

Gaeta, A. L.

R. Halir, Y. Okawachi, J. S. Levy, M. A. Foster, M. Lipson, and A. L. Gaeta, “Ultrabroadband supercontinuum generation in a CMOS-compatible platform,” Opt. Lett., vol. 37, no. 10, pp. 1685–1687,  2012. [Online]. Available: http://dx.doi.org/10.1364/OL.37.001685

M. A. Foster, R. Salem, D. F. Geraghty, A. C. Turner-Foster, M. Lipson, and A. L. Gaeta, “Silicon-chip-based ultrafast optical oscilloscope,” Nature, vol. 456, no. 7218, pp. 81–84,  2008. [Online]. Available: http://dx.doi.org/10.1038/nature07430

Geraghty, D. F.

M. A. Foster, R. Salem, D. F. Geraghty, A. C. Turner-Foster, M. Lipson, and A. L. Gaeta, “Silicon-chip-based ultrafast optical oscilloscope,” Nature, vol. 456, no. 7218, pp. 81–84,  2008. [Online]. Available: http://dx.doi.org/10.1038/nature07430

Halir, R.

Heberle, A.

Y. Lee and A. Heberle, “Observation of enhanced group velocity dispersion in coupled waveguide structures,” J. Lightw. Technol. vol. 17, no. 6, pp. 1049–1055,  1999. [Online]. Available: http://dx.doi.org/10.1109/50.769307

Heck, M. J. R.

M. J. R. Hecket al., “Design, fabrication and characterization of an InP-based tunable integrated optical pulse shaper,” vol. 44, no. 4, pp. 370–377,  2008. [Online]. Available: http://dx.doi.org/10.1109/JQE.2007.914304

Hertel, I.

R. Stoian, M. Boyle, A. Thoss, A. Rosenfeld, G. Korn, and I. Hertel, “Dynamic temporal pulse shaping in advanced ultrafast laser material processing,” Appl. Phys. A, vol. 77, no. 2, pp. 265–269, 2003. [Online]. Available: http://link.springer.com/article/10.1007/s00339-003-2112-x

Hodgkinson, J.

J. Hodgkinson and R. P. Tatam, “Optical gas sensing: A review,” Meas. Sci. Technol., vol. 24, no. 1,  2012, Art. no. . [Online]. Available: http://dx.doi.org/10.1088/0957-0233/24/1/012004

Hosomi, K.

Y. Lee, K. Hosomi, H. Uchiyama, T. Katsuyama, S. Kominami, and T. Mishima, “Applying a mode selector to improve the pulse-compression performance of asymmetric-coupled-waveguide-based dispersion compensators,” Opt. Rev., vol. 10, no. 1, pp. 38–42,  2003. [Online]. Available: http://dx.doi.org/10.1007/s10043-003-0038-3

Katsuyama, T.

Y. Lee, K. Hosomi, H. Uchiyama, T. Katsuyama, S. Kominami, and T. Mishima, “Applying a mode selector to improve the pulse-compression performance of asymmetric-coupled-waveguide-based dispersion compensators,” Opt. Rev., vol. 10, no. 1, pp. 38–42,  2003. [Online]. Available: http://dx.doi.org/10.1007/s10043-003-0038-3

Kikuchi, N.

N. Kikuchiet al., “Monolithically integrated 100-channel WDM channel selector employing low-crosstalk AWG,” IEEE Photon. Technol. Lett. vol. 16, no. 11, pp. 2481–2483,  2004. [Online]. Available: http://dx.doi.org/10.1109/LPT.2004.835195

Kim, K.

Kjellman, J.

J. Kjellman, R. Stabile, and K. Williams, “Dual width waveguides for all-integrated giant group velocity dispersion,” in Proc. 20th Annu. Symp. IEEE Photon. Benelux Chapter, 2015, vol. 26, pp. 39–42.

Kominami, S.

Y. Lee, K. Hosomi, H. Uchiyama, T. Katsuyama, S. Kominami, and T. Mishima, “Applying a mode selector to improve the pulse-compression performance of asymmetric-coupled-waveguide-based dispersion compensators,” Opt. Rev., vol. 10, no. 1, pp. 38–42,  2003. [Online]. Available: http://dx.doi.org/10.1007/s10043-003-0038-3

Korn, G.

R. Stoian, M. Boyle, A. Thoss, A. Rosenfeld, G. Korn, and I. Hertel, “Dynamic temporal pulse shaping in advanced ultrafast laser material processing,” Appl. Phys. A, vol. 77, no. 2, pp. 265–269, 2003. [Online]. Available: http://link.springer.com/article/10.1007/s00339-003-2112-x

Lacey, J. P. R.

F. P. Payne and J. P. R. Lacey, “A theoretical analysis of scattering loss from planar optical waveguides,” Opt. Quantum Electron., vol. 26, no. 10, pp. 977–986,  1994.

Lederer, F.

U. Peschel, T. Peschel, and F. Lederer, “A compact device for highly efficient dispersion compensation in fiber transmission,” Appl. Phys. Lett., vol. 67, no. 15, pp. 2111–2113, 1995. [Online]. Available: http://dx.doi.org/10.1063/1.114736

Lee, S.

Lee, Y.

Y. Lee, A. Takei, T. Taniguchi, and H. Uchiyama, “Temperature tuning of dispersion compensation using semiconductor asymmetric coupled waveguides,” J. Appl. Phys., vol. 98, no. 11, 2005, Art. no. . [Online]. Available: http://dx.doi.org/10.1063/1.2136417

Y. Lee, T. Shiota, A. Takei, T. Taniguchi, and H. Uchiyama, “Semiconductor dispersion compensator based on two vertically coupled asymmetric ridge waveguides,” Jpn. J. Appl. Phys., vol. 43, no. 10, pp. 7036–7041,  2004. [Online]. Available: http://dx.doi.org/10.1143/JJAP.43.7036

Y. Lee, K. Hosomi, H. Uchiyama, T. Katsuyama, S. Kominami, and T. Mishima, “Applying a mode selector to improve the pulse-compression performance of asymmetric-coupled-waveguide-based dispersion compensators,” Opt. Rev., vol. 10, no. 1, pp. 38–42,  2003. [Online]. Available: http://dx.doi.org/10.1007/s10043-003-0038-3

Y. Lee, “A study on asymmetric coupled waveguides as compact dispersion compensators,” Opt. Quantum Electron., vol. 33, no. 7/10, pp. 767–774, 2001. [Online]. Available: http://dx.doi.org/10.1023/A:1017535919563

Y. Lee, “A semiconductor coupled-waveguide structure as a dispersion compensator,” Jpn. J. Appl. Phys., vol. 39, no. 3A, pp. 1140–1145,  2000. [Online]. Available: http://dx.doi.org/10.1143/JJAP.39.1140

Y. Lee and A. Heberle, “Observation of enhanced group velocity dispersion in coupled waveguide structures,” J. Lightw. Technol. vol. 17, no. 6, pp. 1049–1055,  1999. [Online]. Available: http://dx.doi.org/10.1109/50.769307

Y. Lee, “Pulse compression using coupled-waveguide structures as highly dispersive elements,” Appl. Phys. Lett., vol. 73, no. 19, 1998, Art. no. . [Online]. Available: http://dx.doi.org/10.1063/1.122568

Levy, J. S.

Lin, Q.

Lipson, M.

R. Halir, Y. Okawachi, J. S. Levy, M. A. Foster, M. Lipson, and A. L. Gaeta, “Ultrabroadband supercontinuum generation in a CMOS-compatible platform,” Opt. Lett., vol. 37, no. 10, pp. 1685–1687,  2012. [Online]. Available: http://dx.doi.org/10.1364/OL.37.001685

M. A. Foster, R. Salem, D. F. Geraghty, A. C. Turner-Foster, M. Lipson, and A. L. Gaeta, “Silicon-chip-based ultrafast optical oscilloscope,” Nature, vol. 456, no. 7218, pp. 81–84,  2008. [Online]. Available: http://dx.doi.org/10.1038/nature07430

Lu, S.

W. Min, C. W. Freudiger, S. Lu, and X. S. Xie, “Coherent nonlinear optical imaging: Beyond fluorescence microscopy,” Annu. Rev. Phys. Chem., vol. 62, no. 1, pp. 507–530,  2011. [Online]. Available: http://dx.doi.org/10.1146/annurev.physchem.012809.103512

Min, W.

W. Min, C. W. Freudiger, S. Lu, and X. S. Xie, “Coherent nonlinear optical imaging: Beyond fluorescence microscopy,” Annu. Rev. Phys. Chem., vol. 62, no. 1, pp. 507–530,  2011. [Online]. Available: http://dx.doi.org/10.1146/annurev.physchem.012809.103512

Mishima, T.

Y. Lee, K. Hosomi, H. Uchiyama, T. Katsuyama, S. Kominami, and T. Mishima, “Applying a mode selector to improve the pulse-compression performance of asymmetric-coupled-waveguide-based dispersion compensators,” Opt. Rev., vol. 10, no. 1, pp. 38–42,  2003. [Online]. Available: http://dx.doi.org/10.1007/s10043-003-0038-3

Mourou, G.

D. Strickland and G. Mourou, “Compression of amplified chirped optical pulses,” Opt. Commun., vol. 56, no. 3, pp. 219–221,  1985. [Online]. Available: http://dx.doi.org/10.1016/0030-4018(85)90120-8

Okawachi, Y.

Pasquazi, A.

A. Pasquaziet al., “Sub-picosecond phase-sensitive optical pulse characterization on a chip,” Nature Photon., vol. 5, no. 10, pp. 618–623,  2011. [Online]. Available: http://dx.doi.org/10.1038/nphoton.2011.199

Payne, F. P.

F. P. Payne and J. P. R. Lacey, “A theoretical analysis of scattering loss from planar optical waveguides,” Opt. Quantum Electron., vol. 26, no. 10, pp. 977–986,  1994.

Peschel, T.

U. Peschel, T. Peschel, and F. Lederer, “A compact device for highly efficient dispersion compensation in fiber transmission,” Appl. Phys. Lett., vol. 67, no. 15, pp. 2111–2113, 1995. [Online]. Available: http://dx.doi.org/10.1063/1.114736

Peschel, U.

U. Peschel, T. Peschel, and F. Lederer, “A compact device for highly efficient dispersion compensation in fiber transmission,” Appl. Phys. Lett., vol. 67, no. 15, pp. 2111–2113, 1995. [Online]. Available: http://dx.doi.org/10.1063/1.114736

Rosenfeld, A.

R. Stoian, M. Boyle, A. Thoss, A. Rosenfeld, G. Korn, and I. Hertel, “Dynamic temporal pulse shaping in advanced ultrafast laser material processing,” Appl. Phys. A, vol. 77, no. 2, pp. 265–269, 2003. [Online]. Available: http://link.springer.com/article/10.1007/s00339-003-2112-x

Salem, R.

M. A. Foster, R. Salem, D. F. Geraghty, A. C. Turner-Foster, M. Lipson, and A. L. Gaeta, “Silicon-chip-based ultrafast optical oscilloscope,” Nature, vol. 456, no. 7218, pp. 81–84,  2008. [Online]. Available: http://dx.doi.org/10.1038/nature07430

Shiota, T.

Y. Lee, T. Shiota, A. Takei, T. Taniguchi, and H. Uchiyama, “Semiconductor dispersion compensator based on two vertically coupled asymmetric ridge waveguides,” Jpn. J. Appl. Phys., vol. 43, no. 10, pp. 7036–7041,  2004. [Online]. Available: http://dx.doi.org/10.1143/JJAP.43.7036

Smit, M.

M. Smitet al., “An introduction to InP-based generic integration technology,” Semicond. Sci. Technol., vol. 29, no. 8, 2014, Art. no. . [Online]. Available: http://dx.doi.org/10.1088/0268-1242/29/8/083001

Soref, R.

Stabile, R.

J. Kjellman, R. Stabile, and K. Williams, “Dual width waveguides for all-integrated giant group velocity dispersion,” in Proc. 20th Annu. Symp. IEEE Photon. Benelux Chapter, 2015, vol. 26, pp. 39–42.

Stoian, R.

R. Stoian, M. Boyle, A. Thoss, A. Rosenfeld, G. Korn, and I. Hertel, “Dynamic temporal pulse shaping in advanced ultrafast laser material processing,” Appl. Phys. A, vol. 77, no. 2, pp. 265–269, 2003. [Online]. Available: http://link.springer.com/article/10.1007/s00339-003-2112-x

Strickland, D.

D. Strickland and G. Mourou, “Compression of amplified chirped optical pulses,” Opt. Commun., vol. 56, no. 3, pp. 219–221,  1985. [Online]. Available: http://dx.doi.org/10.1016/0030-4018(85)90120-8

Takei, A.

Y. Lee, A. Takei, T. Taniguchi, and H. Uchiyama, “Temperature tuning of dispersion compensation using semiconductor asymmetric coupled waveguides,” J. Appl. Phys., vol. 98, no. 11, 2005, Art. no. . [Online]. Available: http://dx.doi.org/10.1063/1.2136417

Y. Lee, T. Shiota, A. Takei, T. Taniguchi, and H. Uchiyama, “Semiconductor dispersion compensator based on two vertically coupled asymmetric ridge waveguides,” Jpn. J. Appl. Phys., vol. 43, no. 10, pp. 7036–7041,  2004. [Online]. Available: http://dx.doi.org/10.1143/JJAP.43.7036

Taniguchi, T.

Y. Lee, A. Takei, T. Taniguchi, and H. Uchiyama, “Temperature tuning of dispersion compensation using semiconductor asymmetric coupled waveguides,” J. Appl. Phys., vol. 98, no. 11, 2005, Art. no. . [Online]. Available: http://dx.doi.org/10.1063/1.2136417

Y. Lee, T. Shiota, A. Takei, T. Taniguchi, and H. Uchiyama, “Semiconductor dispersion compensator based on two vertically coupled asymmetric ridge waveguides,” Jpn. J. Appl. Phys., vol. 43, no. 10, pp. 7036–7041,  2004. [Online]. Available: http://dx.doi.org/10.1143/JJAP.43.7036

Tatam, R. P.

J. Hodgkinson and R. P. Tatam, “Optical gas sensing: A review,” Meas. Sci. Technol., vol. 24, no. 1,  2012, Art. no. . [Online]. Available: http://dx.doi.org/10.1088/0957-0233/24/1/012004

Thoss, A.

R. Stoian, M. Boyle, A. Thoss, A. Rosenfeld, G. Korn, and I. Hertel, “Dynamic temporal pulse shaping in advanced ultrafast laser material processing,” Appl. Phys. A, vol. 77, no. 2, pp. 265–269, 2003. [Online]. Available: http://link.springer.com/article/10.1007/s00339-003-2112-x

Tolstikhin, V.

V. Tolstikhinet al., “Monolithically integrated optical channel monitor for DWDM transmission systems,” J. Lightw. Technol. vol. 22, no. 1, pp. 146–153,  2004. [Online]. Available: http://dx.doi.org/10.1109/JLT.2003.822164

Turner, A. C.

Turner-Foster, A. C.

M. A. Foster, R. Salem, D. F. Geraghty, A. C. Turner-Foster, M. Lipson, and A. L. Gaeta, “Silicon-chip-based ultrafast optical oscilloscope,” Nature, vol. 456, no. 7218, pp. 81–84,  2008. [Online]. Available: http://dx.doi.org/10.1038/nature07430

Uchiyama, H.

Y. Lee, A. Takei, T. Taniguchi, and H. Uchiyama, “Temperature tuning of dispersion compensation using semiconductor asymmetric coupled waveguides,” J. Appl. Phys., vol. 98, no. 11, 2005, Art. no. . [Online]. Available: http://dx.doi.org/10.1063/1.2136417

Y. Lee, T. Shiota, A. Takei, T. Taniguchi, and H. Uchiyama, “Semiconductor dispersion compensator based on two vertically coupled asymmetric ridge waveguides,” Jpn. J. Appl. Phys., vol. 43, no. 10, pp. 7036–7041,  2004. [Online]. Available: http://dx.doi.org/10.1143/JJAP.43.7036

Y. Lee, K. Hosomi, H. Uchiyama, T. Katsuyama, S. Kominami, and T. Mishima, “Applying a mode selector to improve the pulse-compression performance of asymmetric-coupled-waveguide-based dispersion compensators,” Opt. Rev., vol. 10, no. 1, pp. 38–42,  2003. [Online]. Available: http://dx.doi.org/10.1007/s10043-003-0038-3

Wada, O.

O. Wada, “Femtosecond all-optical devices for ultrafast communication and signal processing,” New J. Phys., vol. 6, pp. 183–183,  2004. [Online]. Available: http://dx.doi.org/10.1088/1367-2630/6/1/183

Weber, J.-P.

J.-P. Weber, “Optimization of the carrier-induced effective index change in InGaAsP waveguides-application to tunable bragg filters,” IEEE J. Quantum Electron. vol. 30, no. 8, pp. 1801–1816, 1994.

Williams, K.

J. Kjellman, R. Stabile, and K. Williams, “Dual width waveguides for all-integrated giant group velocity dispersion,” in Proc. 20th Annu. Symp. IEEE Photon. Benelux Chapter, 2015, vol. 26, pp. 39–42.

Willner, A. E.

Xiao-Li, Y.

Xie, X. S.

W. Min, C. W. Freudiger, S. Lu, and X. S. Xie, “Coherent nonlinear optical imaging: Beyond fluorescence microscopy,” Annu. Rev. Phys. Chem., vol. 62, no. 1, pp. 507–530,  2011. [Online]. Available: http://dx.doi.org/10.1146/annurev.physchem.012809.103512

Yan, Y.

Yue, Y.

Zhang, L.

Annu. Rev. Phys. Chem. (1)

W. Min, C. W. Freudiger, S. Lu, and X. S. Xie, “Coherent nonlinear optical imaging: Beyond fluorescence microscopy,” Annu. Rev. Phys. Chem., vol. 62, no. 1, pp. 507–530,  2011. [Online]. Available: http://dx.doi.org/10.1146/annurev.physchem.012809.103512

Appl. Opt. (1)

Appl. Phys. A (1)

R. Stoian, M. Boyle, A. Thoss, A. Rosenfeld, G. Korn, and I. Hertel, “Dynamic temporal pulse shaping in advanced ultrafast laser material processing,” Appl. Phys. A, vol. 77, no. 2, pp. 265–269, 2003. [Online]. Available: http://link.springer.com/article/10.1007/s00339-003-2112-x

Appl. Phys. Lett. (2)

U. Peschel, T. Peschel, and F. Lederer, “A compact device for highly efficient dispersion compensation in fiber transmission,” Appl. Phys. Lett., vol. 67, no. 15, pp. 2111–2113, 1995. [Online]. Available: http://dx.doi.org/10.1063/1.114736

Y. Lee, “Pulse compression using coupled-waveguide structures as highly dispersive elements,” Appl. Phys. Lett., vol. 73, no. 19, 1998, Art. no. . [Online]. Available: http://dx.doi.org/10.1063/1.122568

IEEE Photon. Technol. Lett. (1)

N. Kikuchiet al., “Monolithically integrated 100-channel WDM channel selector employing low-crosstalk AWG,” IEEE Photon. Technol. Lett. vol. 16, no. 11, pp. 2481–2483,  2004. [Online]. Available: http://dx.doi.org/10.1109/LPT.2004.835195

J. Appl. Phys. (2)

Y. Lee, A. Takei, T. Taniguchi, and H. Uchiyama, “Temperature tuning of dispersion compensation using semiconductor asymmetric coupled waveguides,” J. Appl. Phys., vol. 98, no. 11, 2005, Art. no. . [Online]. Available: http://dx.doi.org/10.1063/1.2136417

S. Adachi, “Refractive indices of III–V compounds: Key properties of InGaAsP relevant to device design,” J. Appl. Phys., vol. 53, no. 8, 1982, Art. no. . [Online]. Available: http://dx.doi.org/10.1063/1.331425

J. Lightw. Technol. (2)

V. Tolstikhinet al., “Monolithically integrated optical channel monitor for DWDM transmission systems,” J. Lightw. Technol. vol. 22, no. 1, pp. 146–153,  2004. [Online]. Available: http://dx.doi.org/10.1109/JLT.2003.822164

Y. Lee and A. Heberle, “Observation of enhanced group velocity dispersion in coupled waveguide structures,” J. Lightw. Technol. vol. 17, no. 6, pp. 1049–1055,  1999. [Online]. Available: http://dx.doi.org/10.1109/50.769307

Jpn. J. Appl. Phys. (2)

Y. Lee, “A semiconductor coupled-waveguide structure as a dispersion compensator,” Jpn. J. Appl. Phys., vol. 39, no. 3A, pp. 1140–1145,  2000. [Online]. Available: http://dx.doi.org/10.1143/JJAP.39.1140

Y. Lee, T. Shiota, A. Takei, T. Taniguchi, and H. Uchiyama, “Semiconductor dispersion compensator based on two vertically coupled asymmetric ridge waveguides,” Jpn. J. Appl. Phys., vol. 43, no. 10, pp. 7036–7041,  2004. [Online]. Available: http://dx.doi.org/10.1143/JJAP.43.7036

Meas. Sci. Technol. (1)

J. Hodgkinson and R. P. Tatam, “Optical gas sensing: A review,” Meas. Sci. Technol., vol. 24, no. 1,  2012, Art. no. . [Online]. Available: http://dx.doi.org/10.1088/0957-0233/24/1/012004

Nature (1)

M. A. Foster, R. Salem, D. F. Geraghty, A. C. Turner-Foster, M. Lipson, and A. L. Gaeta, “Silicon-chip-based ultrafast optical oscilloscope,” Nature, vol. 456, no. 7218, pp. 81–84,  2008. [Online]. Available: http://dx.doi.org/10.1038/nature07430

Nature Photon. (1)

A. Pasquaziet al., “Sub-picosecond phase-sensitive optical pulse characterization on a chip,” Nature Photon., vol. 5, no. 10, pp. 618–623,  2011. [Online]. Available: http://dx.doi.org/10.1038/nphoton.2011.199

New J. Phys. (1)

O. Wada, “Femtosecond all-optical devices for ultrafast communication and signal processing,” New J. Phys., vol. 6, pp. 183–183,  2004. [Online]. Available: http://dx.doi.org/10.1088/1367-2630/6/1/183

Opt. Commun. (1)

D. Strickland and G. Mourou, “Compression of amplified chirped optical pulses,” Opt. Commun., vol. 56, no. 3, pp. 219–221,  1985. [Online]. Available: http://dx.doi.org/10.1016/0030-4018(85)90120-8

Opt. Express (6)

K. Kim, S. Lee, and P. Delfyett, “1.4kW high peak power generation from an all semiconductor mode-locked master oscillator power amplifier system based on extreme chirped pulse amplification(x-cpa),” Opt. Express, vol. 13, no. 12, pp. 4600–4606,  2005. [Online]. Available: http://www.opticsexpress.org/abstract.cfm?URI=oe-13-12-4600

A. C. Turneret al., “Tailored anomalous group-velocity dispersion in silicon channel waveguides,” Opt. Express, vol. 14, no. 10, pp. 4357–4362,  2006. [Online]. Available: http://www.opticsexpress.org/abstract.cfm?URI=oe-14-10-4357

L. Zhang, Y. Yue, Y. Xiao-Li, R. G. Beausoleil, and A. E. Willner, “Highly dispersive slot waveguides,” Opt. Express, vol. 17, no. 9, pp. 7095–7101, 2009. [Online]. Available: http://dx.doi.org/10.1364/OE.17.007095

L. Zhanget al., “On-chip two-octave supercontinuum generation by enhancing self-steepening of optical pulses,” Opt. Express, vol. 19, no. 12, pp. 11584–11590,  2011. [Online]. Available: http://dx.doi.org/10.1364/OE.19.011584

L. Zhang, Q. Lin, Y. Yue, Y. Yan, R. G. Beausoleil, and A. E. Willner, “Silicon waveguide with four zero-dispersion wavelengths and its application in on-chip octave-spanning supercontinuum generation,” Opt. Express, vol. 20, no. 2, pp. 1685–1690,  2012. [Online]. Available: http://dx.doi.org/10.1364/OE.20.001685

D. D’Agostinoet al., “Low-loss passive waveguides in a generic InP foundry process via local diffusion of zinc,” Opt. Express, vol. 23, no. 19, pp. 25143–25157,  2015. [Online]. Available: http://dx.doi.org/10.1364/OE.23.025143

Opt. Lett. (1)

Opt. Quantum Electron. (2)

F. P. Payne and J. P. R. Lacey, “A theoretical analysis of scattering loss from planar optical waveguides,” Opt. Quantum Electron., vol. 26, no. 10, pp. 977–986,  1994.

Y. Lee, “A study on asymmetric coupled waveguides as compact dispersion compensators,” Opt. Quantum Electron., vol. 33, no. 7/10, pp. 767–774, 2001. [Online]. Available: http://dx.doi.org/10.1023/A:1017535919563

Opt. Rev. (1)

Y. Lee, K. Hosomi, H. Uchiyama, T. Katsuyama, S. Kominami, and T. Mishima, “Applying a mode selector to improve the pulse-compression performance of asymmetric-coupled-waveguide-based dispersion compensators,” Opt. Rev., vol. 10, no. 1, pp. 38–42,  2003. [Online]. Available: http://dx.doi.org/10.1007/s10043-003-0038-3

Photon Design (1)

Photon Design, “Fimmwave and Fimmprop,” Photon Design, 2015, version 6.2.2.

Semicond. Sci. Technol. (1)

M. Smitet al., “An introduction to InP-based generic integration technology,” Semicond. Sci. Technol., vol. 29, no. 8, 2014, Art. no. . [Online]. Available: http://dx.doi.org/10.1088/0268-1242/29/8/083001

Other (3)

J.-P. Weber, “Optimization of the carrier-induced effective index change in InGaAsP waveguides-application to tunable bragg filters,” IEEE J. Quantum Electron. vol. 30, no. 8, pp. 1801–1816, 1994.

M. J. R. Hecket al., “Design, fabrication and characterization of an InP-based tunable integrated optical pulse shaper,” vol. 44, no. 4, pp. 370–377,  2008. [Online]. Available: http://dx.doi.org/10.1109/JQE.2007.914304

J. Kjellman, R. Stabile, and K. Williams, “Dual width waveguides for all-integrated giant group velocity dispersion,” in Proc. 20th Annu. Symp. IEEE Photon. Benelux Chapter, 2015, vol. 26, pp. 39–42.

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.