Abstract

As a counterpart of analog radio-over-fiber technology, digital radio-over-fiber (D-RoF) system, such as common public radio interface (CPRI), is a matured and robust solution to support RF signal delivery in traditional mobile fronthaul networks. In view of recent progresses in delta-sigma modulation, data compression, and advanced error correcting coding, the efficiency of D-RoF is significantly improved, which motivates researchers to re-evaluate the role of D-RoF in future mobile fronthaul networks to support 5G and beyond wireless communications. In this paper, we demonstrate two critical technologies to improve the transmission efficiency and flexibility of D-RoF systems. A fast-statistical-estimation based data compression algorithm is proposed to reduce the number of quantization digits in a D-RoF-based mobile fronthaul with low complexity and high quality. Combined with resampling and advanced modulation formats, data-transmission efficiency of a 25-Gbit/s D-RoF testbed is improved by around five times compared with uncompressed CPRI systems. On the other hand, we also experimentally demonstrate a point-to-multi-point (PTMP) D-RoF system with multiband modulation, which exhibits higher flexibility and better compatibility with multiple services and different radio-access technologies compared to existing schemes based on time interleaving. An experiment of 13.3-Gbit/s 4-band PTMP bidirectional D-RoF MFH is demonstrated. Combined with data compression, error free delivery of 6.4-Gbit/s 1024-QAM 5G-New-Radio-like signals is realized.

© 2017 IEEE

PDF Article

References

You do not have subscription access to this journal. Citation lists with outbound citation links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription