Expand this Topic clickable element to expand a topic
Skip to content
Optica Publishing Group
  • Journal of Lightwave Technology
  • Vol. 35,
  • Issue 17,
  • pp. 3664-3670
  • (2017)

Evaluation of Modal Power Distribution of Automotive Optical Gigabit Ethernet Connections

Not Accessible

Your library or personal account may give you access

Abstract

Automotive optical gigabit Ethernet is a technology that is expected to realize autonomous driving cars with notable benefits: electromagnetic interference free, lighter weight, and higher data communication. Plastic optical fibers have been used in automotive optical networks since 1998. To secure a higher data rate, two issues must be considered: the need for modal power distribution (MPD) control and the lack of link margin. Here, we performed a combined study of MPD and the frequency characteristics of a 15-m optical fiber cable with multiple connections. The results reveal that the links have transmission directivity and the number of connections influences the bandwidth with different MPDs, as shown in encircled angular flux (EAF) profiles. We also show that automotive optical connections typically contain an air gap that generates higher mode radiation. To minimize this radiation, we filled the gap with a cured gel. We found that the EAF profile shifts from 13.8° to 15.4° at 50% EAF with a 1.75-dB insertion loss improvement based on the shift at z/a = 3.1 (where z indicates the axial misalignment at the connection, and a is the core radius). The approach presented here is an effective solution for facilitating the rapid realization of automotive optical gigabit communication.

© 2017 IEEE

PDF Article
More Like This
Launch light dependency of step-index multimode fiber connections analyzed by modal power distribution using encircled angular flux

Shigeru Kobayashi, Manabu Yasukawa, and Okihiro Sugihara
Appl. Opt. 56(4) 876-883 (2017)

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Select as filters


Select Topics Cancel
© Copyright 2024 | Optica Publishing Group. All rights reserved, including rights for text and data mining and training of artificial technologies or similar technologies.