Abstract

In this paper, we investigate electrical crosstalk in integrated Mach-Zehnder modulator arrays based on n-doped InP substrate and show that it can be the cause for transmitter performance degradations. In particular, a common ground return path between adjacent modulators can cause high coupling noise up to −20 dB which leads to system power penalties of more than 10 dB at 10 Gb/s OOK modulation. Furthermore, we demonstrate that electrical crosstalk is significantly reduced in the absence of the shared ground and that it varies with modulator separation distance. Experimental results are shown that indicate a crosstalk tolerance of −40 dB for 1 dB power penalty at 10 Gb/s.

© 2016 OAPA

PDF Article

References

  • View by:
  • |
  • |
  • |

  1. R. Nagarajanet al., “Large-scale photonic integrated circuits,” IEEE J. Sel. Topics Quantum Electron., vol. 11, no. 1, pp. 50–65, 2005.
  2. P. Evanset al., “1.12 Tb/s superchannel coherent PM-QPSK InP transmitter photonic integrated circuit (PIC),” Opt. Express, vol. 19, no. 26, pp. B154–B158, 2011.
  3. M. Smitet al., “An introduction to InP-based generic integration technology,” Semicond. Sci. Technol., vol. 29, no. 8, 2014, Art. no. .
  4. N. Andriolliet al., “InP monolithically integrated coherent transmitter,” Opt. Express, vol. 23, no. 8, pp. 10741–10746, 2015.
  5. K. Lawniczuket al., “AWG-DBR-based WDM transmitter fabricated in an InP generic foundry platform,” presented at the Optical Fiber Communication Conf. Expo., San Francisco, CA, USA, Mar. 2014, paper Tu3H.2.
  6. S. Stopinski, M. Malinowski, R. Piramidowicz, M. K. Smit, and X. J. M. Leijtens, “Monolithically integrated 8-channel WDM reflective modulator,” presented at the Optical Fiber Communication Conf. Expo., Anaheim, CA, USA, Mar. 2013, paper OW4J.7.
  7. K. Lawniczuket al., “InP-based photonic multiwavelength transmitter with DBR laser array,” IEEE Photon. Technol. Lett., vol. 25, no. 4, pp. 352–354, 2013.
  8. S. Kanazawaet al., “A compact EADFB laser array module for a future 100-Gb/s ethernet transceiver,” IEEE J. Sel. Topics Quantum Electron., vol. 17, no. 5, pp. 1191–1197, 2011.
  9. S. Kanazawaet al., “Ultra-compact 100 GbE transmitter optical sub-assembly for 40-km SMF transmission,” J. Lightw. Technol., vol. 31, no. 4, pp. 602–608, 2013.
  10. M. Shishikura, T. Ban, R. Mita, Y. Matsuoka, and K. Nakahara, “1.3 μm 10 Gbit/s/channel parallel transmitter and receiver modules,” IEIEC Trans. C, vol. J90-C, no. 11, pp. 757–766, 2007, Art. no. IW3A.3.
  11. W. Yao, G. Gilardi, M. Smit, and M. J. Wale, “Performance degradation of integrated modulator arrays due to electrical crosstalk,” presented at the Integrated Photonics Research, Silicon Nanophotonics, San Diego, CA, USA, Jul. 2014, paper IW3A.3.
  12. W. Yao, G. Gilardi, N. Calabretta, M. K. Smit, and M. J. Wale, “Experimental and numerical study of electrical crosstalk in photonic integrated circuits,” J. Lightw. Technol., vol. 33, no. 4, pp. 934–942, 2015.
  13. W. Yao, G. Gilardi, M. Smit, and M. Wale, “Electrical crosstalk in integrated Mach-Zehnder modulators caused by a shared ground path,” presented at the Integrated Photonics Research, Silicon Nano Photonics, Boston, MA, USA, 2015, paper IM2B.3.
  14. G. L. Liet al., “High-saturation high-speed traveling-wave InGaAsP-InP electroabsorption modulator,” IEEE Photon. Technol. Lett., vol. 13, no. 10, pp. 1076–1078, 2001.
  15. E. Goldstein, L. Eskildsen, and A. Elrefaie, “Performance implications of component crosstalk in transparent lightwave networks,” IEEE Photon. Technol. Lett., vol. 6, no. 5, pp. 657–660, 1994.
  16. I. Monroy, E. Tangdiongga, and H. de Waardt, “On the distribution and performance implications of filtered interferometric crosstalk in optical WDM networks,” J. Lightw. Technol., vol. 17, no. 6, pp. 989–997, 1999.

2015 (2)

N. Andriolliet al., “InP monolithically integrated coherent transmitter,” Opt. Express, vol. 23, no. 8, pp. 10741–10746, 2015.

W. Yao, G. Gilardi, N. Calabretta, M. K. Smit, and M. J. Wale, “Experimental and numerical study of electrical crosstalk in photonic integrated circuits,” J. Lightw. Technol., vol. 33, no. 4, pp. 934–942, 2015.

2014 (1)

M. Smitet al., “An introduction to InP-based generic integration technology,” Semicond. Sci. Technol., vol. 29, no. 8, 2014, Art. no. .

2013 (2)

S. Kanazawaet al., “Ultra-compact 100 GbE transmitter optical sub-assembly for 40-km SMF transmission,” J. Lightw. Technol., vol. 31, no. 4, pp. 602–608, 2013.

K. Lawniczuket al., “InP-based photonic multiwavelength transmitter with DBR laser array,” IEEE Photon. Technol. Lett., vol. 25, no. 4, pp. 352–354, 2013.

2011 (2)

S. Kanazawaet al., “A compact EADFB laser array module for a future 100-Gb/s ethernet transceiver,” IEEE J. Sel. Topics Quantum Electron., vol. 17, no. 5, pp. 1191–1197, 2011.

P. Evanset al., “1.12 Tb/s superchannel coherent PM-QPSK InP transmitter photonic integrated circuit (PIC),” Opt. Express, vol. 19, no. 26, pp. B154–B158, 2011.

2007 (1)

M. Shishikura, T. Ban, R. Mita, Y. Matsuoka, and K. Nakahara, “1.3 μm 10 Gbit/s/channel parallel transmitter and receiver modules,” IEIEC Trans. C, vol. J90-C, no. 11, pp. 757–766, 2007, Art. no. IW3A.3.

2005 (1)

R. Nagarajanet al., “Large-scale photonic integrated circuits,” IEEE J. Sel. Topics Quantum Electron., vol. 11, no. 1, pp. 50–65, 2005.

2001 (1)

G. L. Liet al., “High-saturation high-speed traveling-wave InGaAsP-InP electroabsorption modulator,” IEEE Photon. Technol. Lett., vol. 13, no. 10, pp. 1076–1078, 2001.

1999 (1)

I. Monroy, E. Tangdiongga, and H. de Waardt, “On the distribution and performance implications of filtered interferometric crosstalk in optical WDM networks,” J. Lightw. Technol., vol. 17, no. 6, pp. 989–997, 1999.

1994 (1)

E. Goldstein, L. Eskildsen, and A. Elrefaie, “Performance implications of component crosstalk in transparent lightwave networks,” IEEE Photon. Technol. Lett., vol. 6, no. 5, pp. 657–660, 1994.

Andriolli, N.

Ban, T.

M. Shishikura, T. Ban, R. Mita, Y. Matsuoka, and K. Nakahara, “1.3 μm 10 Gbit/s/channel parallel transmitter and receiver modules,” IEIEC Trans. C, vol. J90-C, no. 11, pp. 757–766, 2007, Art. no. IW3A.3.

Calabretta, N.

W. Yao, G. Gilardi, N. Calabretta, M. K. Smit, and M. J. Wale, “Experimental and numerical study of electrical crosstalk in photonic integrated circuits,” J. Lightw. Technol., vol. 33, no. 4, pp. 934–942, 2015.

de Waardt, H.

I. Monroy, E. Tangdiongga, and H. de Waardt, “On the distribution and performance implications of filtered interferometric crosstalk in optical WDM networks,” J. Lightw. Technol., vol. 17, no. 6, pp. 989–997, 1999.

Elrefaie, A.

E. Goldstein, L. Eskildsen, and A. Elrefaie, “Performance implications of component crosstalk in transparent lightwave networks,” IEEE Photon. Technol. Lett., vol. 6, no. 5, pp. 657–660, 1994.

Eskildsen, L.

E. Goldstein, L. Eskildsen, and A. Elrefaie, “Performance implications of component crosstalk in transparent lightwave networks,” IEEE Photon. Technol. Lett., vol. 6, no. 5, pp. 657–660, 1994.

Evans, P.

Gilardi, G.

W. Yao, G. Gilardi, N. Calabretta, M. K. Smit, and M. J. Wale, “Experimental and numerical study of electrical crosstalk in photonic integrated circuits,” J. Lightw. Technol., vol. 33, no. 4, pp. 934–942, 2015.

W. Yao, G. Gilardi, M. Smit, and M. Wale, “Electrical crosstalk in integrated Mach-Zehnder modulators caused by a shared ground path,” presented at the Integrated Photonics Research, Silicon Nano Photonics, Boston, MA, USA, 2015, paper IM2B.3.

W. Yao, G. Gilardi, M. Smit, and M. J. Wale, “Performance degradation of integrated modulator arrays due to electrical crosstalk,” presented at the Integrated Photonics Research, Silicon Nanophotonics, San Diego, CA, USA, Jul. 2014, paper IW3A.3.

Goldstein, E.

E. Goldstein, L. Eskildsen, and A. Elrefaie, “Performance implications of component crosstalk in transparent lightwave networks,” IEEE Photon. Technol. Lett., vol. 6, no. 5, pp. 657–660, 1994.

Kanazawa, S.

S. Kanazawaet al., “Ultra-compact 100 GbE transmitter optical sub-assembly for 40-km SMF transmission,” J. Lightw. Technol., vol. 31, no. 4, pp. 602–608, 2013.

S. Kanazawaet al., “A compact EADFB laser array module for a future 100-Gb/s ethernet transceiver,” IEEE J. Sel. Topics Quantum Electron., vol. 17, no. 5, pp. 1191–1197, 2011.

Lawniczuk, K.

K. Lawniczuket al., “InP-based photonic multiwavelength transmitter with DBR laser array,” IEEE Photon. Technol. Lett., vol. 25, no. 4, pp. 352–354, 2013.

K. Lawniczuket al., “AWG-DBR-based WDM transmitter fabricated in an InP generic foundry platform,” presented at the Optical Fiber Communication Conf. Expo., San Francisco, CA, USA, Mar. 2014, paper Tu3H.2.

Leijtens, X. J. M.

S. Stopinski, M. Malinowski, R. Piramidowicz, M. K. Smit, and X. J. M. Leijtens, “Monolithically integrated 8-channel WDM reflective modulator,” presented at the Optical Fiber Communication Conf. Expo., Anaheim, CA, USA, Mar. 2013, paper OW4J.7.

Li, G. L.

G. L. Liet al., “High-saturation high-speed traveling-wave InGaAsP-InP electroabsorption modulator,” IEEE Photon. Technol. Lett., vol. 13, no. 10, pp. 1076–1078, 2001.

Malinowski, M.

S. Stopinski, M. Malinowski, R. Piramidowicz, M. K. Smit, and X. J. M. Leijtens, “Monolithically integrated 8-channel WDM reflective modulator,” presented at the Optical Fiber Communication Conf. Expo., Anaheim, CA, USA, Mar. 2013, paper OW4J.7.

Matsuoka, Y.

M. Shishikura, T. Ban, R. Mita, Y. Matsuoka, and K. Nakahara, “1.3 μm 10 Gbit/s/channel parallel transmitter and receiver modules,” IEIEC Trans. C, vol. J90-C, no. 11, pp. 757–766, 2007, Art. no. IW3A.3.

Mita, R.

M. Shishikura, T. Ban, R. Mita, Y. Matsuoka, and K. Nakahara, “1.3 μm 10 Gbit/s/channel parallel transmitter and receiver modules,” IEIEC Trans. C, vol. J90-C, no. 11, pp. 757–766, 2007, Art. no. IW3A.3.

Monroy, I.

I. Monroy, E. Tangdiongga, and H. de Waardt, “On the distribution and performance implications of filtered interferometric crosstalk in optical WDM networks,” J. Lightw. Technol., vol. 17, no. 6, pp. 989–997, 1999.

Nagarajan, R.

R. Nagarajanet al., “Large-scale photonic integrated circuits,” IEEE J. Sel. Topics Quantum Electron., vol. 11, no. 1, pp. 50–65, 2005.

Nakahara, K.

M. Shishikura, T. Ban, R. Mita, Y. Matsuoka, and K. Nakahara, “1.3 μm 10 Gbit/s/channel parallel transmitter and receiver modules,” IEIEC Trans. C, vol. J90-C, no. 11, pp. 757–766, 2007, Art. no. IW3A.3.

Piramidowicz, R.

S. Stopinski, M. Malinowski, R. Piramidowicz, M. K. Smit, and X. J. M. Leijtens, “Monolithically integrated 8-channel WDM reflective modulator,” presented at the Optical Fiber Communication Conf. Expo., Anaheim, CA, USA, Mar. 2013, paper OW4J.7.

Shishikura, M.

M. Shishikura, T. Ban, R. Mita, Y. Matsuoka, and K. Nakahara, “1.3 μm 10 Gbit/s/channel parallel transmitter and receiver modules,” IEIEC Trans. C, vol. J90-C, no. 11, pp. 757–766, 2007, Art. no. IW3A.3.

Smit, M.

M. Smitet al., “An introduction to InP-based generic integration technology,” Semicond. Sci. Technol., vol. 29, no. 8, 2014, Art. no. .

W. Yao, G. Gilardi, M. Smit, and M. Wale, “Electrical crosstalk in integrated Mach-Zehnder modulators caused by a shared ground path,” presented at the Integrated Photonics Research, Silicon Nano Photonics, Boston, MA, USA, 2015, paper IM2B.3.

W. Yao, G. Gilardi, M. Smit, and M. J. Wale, “Performance degradation of integrated modulator arrays due to electrical crosstalk,” presented at the Integrated Photonics Research, Silicon Nanophotonics, San Diego, CA, USA, Jul. 2014, paper IW3A.3.

Smit, M. K.

W. Yao, G. Gilardi, N. Calabretta, M. K. Smit, and M. J. Wale, “Experimental and numerical study of electrical crosstalk in photonic integrated circuits,” J. Lightw. Technol., vol. 33, no. 4, pp. 934–942, 2015.

S. Stopinski, M. Malinowski, R. Piramidowicz, M. K. Smit, and X. J. M. Leijtens, “Monolithically integrated 8-channel WDM reflective modulator,” presented at the Optical Fiber Communication Conf. Expo., Anaheim, CA, USA, Mar. 2013, paper OW4J.7.

Stopinski, S.

S. Stopinski, M. Malinowski, R. Piramidowicz, M. K. Smit, and X. J. M. Leijtens, “Monolithically integrated 8-channel WDM reflective modulator,” presented at the Optical Fiber Communication Conf. Expo., Anaheim, CA, USA, Mar. 2013, paper OW4J.7.

Tangdiongga, E.

I. Monroy, E. Tangdiongga, and H. de Waardt, “On the distribution and performance implications of filtered interferometric crosstalk in optical WDM networks,” J. Lightw. Technol., vol. 17, no. 6, pp. 989–997, 1999.

Wale, M.

W. Yao, G. Gilardi, M. Smit, and M. Wale, “Electrical crosstalk in integrated Mach-Zehnder modulators caused by a shared ground path,” presented at the Integrated Photonics Research, Silicon Nano Photonics, Boston, MA, USA, 2015, paper IM2B.3.

Wale, M. J.

W. Yao, G. Gilardi, N. Calabretta, M. K. Smit, and M. J. Wale, “Experimental and numerical study of electrical crosstalk in photonic integrated circuits,” J. Lightw. Technol., vol. 33, no. 4, pp. 934–942, 2015.

W. Yao, G. Gilardi, M. Smit, and M. J. Wale, “Performance degradation of integrated modulator arrays due to electrical crosstalk,” presented at the Integrated Photonics Research, Silicon Nanophotonics, San Diego, CA, USA, Jul. 2014, paper IW3A.3.

Yao, W.

W. Yao, G. Gilardi, N. Calabretta, M. K. Smit, and M. J. Wale, “Experimental and numerical study of electrical crosstalk in photonic integrated circuits,” J. Lightw. Technol., vol. 33, no. 4, pp. 934–942, 2015.

W. Yao, G. Gilardi, M. Smit, and M. Wale, “Electrical crosstalk in integrated Mach-Zehnder modulators caused by a shared ground path,” presented at the Integrated Photonics Research, Silicon Nano Photonics, Boston, MA, USA, 2015, paper IM2B.3.

W. Yao, G. Gilardi, M. Smit, and M. J. Wale, “Performance degradation of integrated modulator arrays due to electrical crosstalk,” presented at the Integrated Photonics Research, Silicon Nanophotonics, San Diego, CA, USA, Jul. 2014, paper IW3A.3.

IEEE J. Sel. Topics Quantum Electron. (2)

R. Nagarajanet al., “Large-scale photonic integrated circuits,” IEEE J. Sel. Topics Quantum Electron., vol. 11, no. 1, pp. 50–65, 2005.

S. Kanazawaet al., “A compact EADFB laser array module for a future 100-Gb/s ethernet transceiver,” IEEE J. Sel. Topics Quantum Electron., vol. 17, no. 5, pp. 1191–1197, 2011.

IEEE Photon. Technol. Lett. (3)

G. L. Liet al., “High-saturation high-speed traveling-wave InGaAsP-InP electroabsorption modulator,” IEEE Photon. Technol. Lett., vol. 13, no. 10, pp. 1076–1078, 2001.

E. Goldstein, L. Eskildsen, and A. Elrefaie, “Performance implications of component crosstalk in transparent lightwave networks,” IEEE Photon. Technol. Lett., vol. 6, no. 5, pp. 657–660, 1994.

K. Lawniczuket al., “InP-based photonic multiwavelength transmitter with DBR laser array,” IEEE Photon. Technol. Lett., vol. 25, no. 4, pp. 352–354, 2013.

IEIEC Trans. C (1)

M. Shishikura, T. Ban, R. Mita, Y. Matsuoka, and K. Nakahara, “1.3 μm 10 Gbit/s/channel parallel transmitter and receiver modules,” IEIEC Trans. C, vol. J90-C, no. 11, pp. 757–766, 2007, Art. no. IW3A.3.

J. Lightw. Technol. (3)

S. Kanazawaet al., “Ultra-compact 100 GbE transmitter optical sub-assembly for 40-km SMF transmission,” J. Lightw. Technol., vol. 31, no. 4, pp. 602–608, 2013.

I. Monroy, E. Tangdiongga, and H. de Waardt, “On the distribution and performance implications of filtered interferometric crosstalk in optical WDM networks,” J. Lightw. Technol., vol. 17, no. 6, pp. 989–997, 1999.

W. Yao, G. Gilardi, N. Calabretta, M. K. Smit, and M. J. Wale, “Experimental and numerical study of electrical crosstalk in photonic integrated circuits,” J. Lightw. Technol., vol. 33, no. 4, pp. 934–942, 2015.

Opt. Express (2)

Semicond. Sci. Technol. (1)

M. Smitet al., “An introduction to InP-based generic integration technology,” Semicond. Sci. Technol., vol. 29, no. 8, 2014, Art. no. .

Other (4)

K. Lawniczuket al., “AWG-DBR-based WDM transmitter fabricated in an InP generic foundry platform,” presented at the Optical Fiber Communication Conf. Expo., San Francisco, CA, USA, Mar. 2014, paper Tu3H.2.

S. Stopinski, M. Malinowski, R. Piramidowicz, M. K. Smit, and X. J. M. Leijtens, “Monolithically integrated 8-channel WDM reflective modulator,” presented at the Optical Fiber Communication Conf. Expo., Anaheim, CA, USA, Mar. 2013, paper OW4J.7.

W. Yao, G. Gilardi, M. Smit, and M. J. Wale, “Performance degradation of integrated modulator arrays due to electrical crosstalk,” presented at the Integrated Photonics Research, Silicon Nanophotonics, San Diego, CA, USA, Jul. 2014, paper IW3A.3.

W. Yao, G. Gilardi, M. Smit, and M. Wale, “Electrical crosstalk in integrated Mach-Zehnder modulators caused by a shared ground path,” presented at the Integrated Photonics Research, Silicon Nano Photonics, Boston, MA, USA, 2015, paper IM2B.3.

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.