Abstract

Long-haul communication systems are requiring more and more spectral efficiency as data rates increase. QAM-16 is a promising candidate for each wavelength in a Wavelength-Division Multiplexed (WDM) system, providing double the spectral efficiency of Quadrature Phase-Shift Keying (QPSK) and four times the spectral efficiency of traditional On–Off Keying (OOK). However, generation of QAM-16 signals can be complex, expensive, and power-hungry when electrical Digital-to-Analog Converters (DACs) are required. We have developed a QAM-16 modulator that precludes the use of an electrical DAC while simultaneously keeping the optical architectural complexity similar to that of a traditional In-phase/Quadrature (IQ) modulator. Using this modulator, we experimentally demonstrate single-polarization, back-to-back transmission, and homodyne detection of QAM-16 signals at rates up to 28.125 Gsymbols/s, resulting in single-polarization system per-wavelength bit rates up to 112.5 Gb/s. This would translate to dual-polarization system per-wavelength bit rates up to 225 Gb/s. This is done using a segmented modulator built on an ultra-low-power CMOS Photonics platform, allowing the modulator and drivers to consume less than 1 W of power.

© 2015 IEEE

PDF Article

References

You do not have subscription access to this journal. Citation lists with outbound citation links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription