Abstract

This paper presents a 50 Gb/s per lane hybrid BiCMOS and silicon photonic integrated circuit for use in fiber optic communications. Fine pitch copper pillars are used to integrate electronics and silicon photonics. The resulting device demonstrates the generation and detection of up to 56 Gb/s NRZ optical signals over 2-km standard single-mode fiber at 1310-nm wavelength. At 40 Gb/s, the link operates error free, and at 56 Gb/s well below KR4 RS-FEC operating BER. The power dissipation of TX including CW laser is 600 mW (450-mW driver, 150-mW CW laser), RX is 150 mW, resulting in total per channel of less than 750 mW.

© 2015 IEEE

PDF Article

References

You do not have subscription access to this journal. Citation lists with outbound citation links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription