Abstract

In a space optical communication system with an amplification sub-system, the performance of the erbium-doped fiber amplifier (EDFA) will worsen due to the effect of space radiation. Consequently, the EDFA will not work under its optimal state which has been already designed on the ground. To fix this problem, a study on the basic characteristics of EDFA under radiation is conducted. In the simulation tests, the gain of EDFA and the optimal length of the erbium-doped fiber both decrease with the dose of radiation. To dynamically adapt to such effects, a new self-adaptive system is established and makes an improvement of 7 dB in the gain when the radiation dose reaches 5000 Gy. This paper can practically benefit the design of the space optical communication systems.

© 2015 IEEE

PDF Article

References

You do not have subscription access to this journal. Citation lists with outbound citation links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription