Abstract

In a ground-to-satellite communication system with a preset EDFA, the EDFA’s performance will be affected by space environment. With 250 Gy radiation, the EDFA’s gain decreases by 2 dB from 19.97 dB at 20°C. The BER increases by 2.5 orders of magnitude from 10−10, and increases more with more radiation. The situation aggravates when the temperature rises by 73°C. The laser’s divergence-angle and transmitter radius have optimal values to make the lowest BER and increasing receiver diameter makes lower BERs, so setting these parameters with appropriate values will compensate the degradation caused by EDFA.

© 2014 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Performance enhancement of free-space optical communications under atmospheric turbulence using modes diversity coherent receipt

Donghao Zheng, Yan Li, Honghang Zhou, Yiming Bian, Chen Yang, Wei Li, Jifang Qiu, Hongxiang Guo, Xiaobin Hong, Yong Zuo, Ian P. Giles, Weijun Tong, and Jian Wu
Opt. Express 26(22) 28879-28890 (2018)

Radiation-induced mismatch effect on performances of space chaos laser communication systems

Mi Li, Yifeng Hong, Su Wang, Yuejiang Song, and Xun Sun
Opt. Lett. 43(20) 5134-5137 (2018)

References

  • View by:
  • |
  • |
  • |

  1. J. Shoemaker, P. Brooks, E. Korevaar, G. Arnold, A. Das, J. Stubstad, and R. G. Hay, “The space technology research vehicle (STRV) −2 program,” Proc. SPIE 4136, 36–47 (2000).
    [Crossref]
  2. A. Biswas, M. W. Wright, J. Kovalik, and S. Piazzolla, “Uplink beacon laser for Mars laser communication demonstration (MLCD),” Proc. SPIE 5712, 93–100 (2005).
    [Crossref]
  3. B. Laurent and O. Duchmann, “The Silex Project: The first European optical intersatellite link experiment,” Proc. SPIE 1417, 2–12 (1991).
    [Crossref]
  4. M. Reyes, Z. Sodnik, P. Lopez, A. Alonso, T. Viera, and G. Oppenhauser, “Preliminary results of the in-orbit test of ARTEMIS with the optical ground station,” Proc. SPIE 4635, 38–49 (2002).
    [Crossref]
  5. S. Girard, J. Kuhnhenn, A. Gusarov, B. Brichard, M. Van Uffelen, Y. Ouerdane, A. Boukenter, and C. Marcandella, “Radiation effects on silica-based optical fibers: recent advances and future challenges,” IEEE Trans. Nucl. Sci. 60(3), 2015–2036 (2013).
    [Crossref]
  6. A. Gusarov, M. V. Uffelen, M. Hotoleanu, H. Thienpont, and F. Berghmans, “Radiation sensitivity of EDFAs based on highly er-doped fibers,” J. Lightwave Technol. 27(11), 1540–1545 (2009).
    [Crossref]
  7. T. S. Rose, D. Gunn, and G. C. Valley, “Gamma and proton radiation effects in erbium-doped fiber amplifiers: active and passive measurements,” J. Lightwave Technol. 19(12), 1918–1923 (2001).
    [Crossref]
  8. O. Berné, M. Caussanel, and O. Gilard, “A model for the prediction of EDFA gain in a space radiation environment,” IEEE Photon. Technol. Lett. 16(10), 2227–2229 (2004).
    [Crossref]
  9. J. Ma, Y. J. Jiang, L. Y. Tan, S. Y. Yu, and W. H. Du, “Influence of beam wander on bit-error rate in a ground-to-satellite laser uplink communication system,” Opt. Lett. 33(22), 2611–2613 (2008).
    [Crossref] [PubMed]
  10. H. Guo, B. Luo, Y. Ren, S. Zhao, and A. Dang, “Influence of beam wander on uplink of ground-to-satellite laser communication and optimization for transmitter beam radius,” Opt. Lett. 35(12), 1977–1979 (2010).
    [Crossref] [PubMed]
  11. L. C. Andrews and R. L. Phillips, “Laser beam propagation through random media,” (SPIE Optical Engineering Press, 1998).
  12. M. K. Jackson and M. Movassaghi, “An accurate compact EDFA model,” (Eur. Conf. Optical Communication, Munich, Germany, 2000).
  13. G. M. Williams, B. M. Wright, W. D. Mack, and E. J. Friebele, “Projecting the performance of erbium-doped fiber devices in a space radiation environment,” Proc. SPIE 3848, 271–280 (1999).
    [Crossref]
  14. J. C. Ding, M. Li, M. H. Tang, Y. Li, and Y. J. Song, “BER performance of MSK in ground-to-satellite uplink optical communication under the influence of atmospheric turbulence and detector noise,” Opt. Lett. 38(18), 3488–3491 (2013).
    [Crossref] [PubMed]
  15. P. C. Becker, N. A. Olsson, and J. R. Simpson, Erbium-Doped Fiber Amplifiers: Fundamentals and Technology (San Diego, CD: Academic Press, 1999).
  16. A. Rodriguez-Gomez, F. Dios, J. A. Rubio, and A. Comerón, “Temporal statistics of the beam-wander contribution to scintillation in ground-to-satellite optical links: an analytical approach,” Appl. Opt. 44(21), 4574–4581 (2005).
    [Crossref] [PubMed]
  17. M. Toyoshima, T. Jono, K. Nakagawa, and A. Yamamoto, “Optimum divergence angle of a Gaussian beam wave in the presence of random jitter in free-space laser communication systems,” J. Opt. Soc. Am. A 19(3), 567–571 (2002).
    [Crossref] [PubMed]

2013 (2)

S. Girard, J. Kuhnhenn, A. Gusarov, B. Brichard, M. Van Uffelen, Y. Ouerdane, A. Boukenter, and C. Marcandella, “Radiation effects on silica-based optical fibers: recent advances and future challenges,” IEEE Trans. Nucl. Sci. 60(3), 2015–2036 (2013).
[Crossref]

J. C. Ding, M. Li, M. H. Tang, Y. Li, and Y. J. Song, “BER performance of MSK in ground-to-satellite uplink optical communication under the influence of atmospheric turbulence and detector noise,” Opt. Lett. 38(18), 3488–3491 (2013).
[Crossref] [PubMed]

2010 (1)

2009 (1)

2008 (1)

2005 (2)

2004 (1)

O. Berné, M. Caussanel, and O. Gilard, “A model for the prediction of EDFA gain in a space radiation environment,” IEEE Photon. Technol. Lett. 16(10), 2227–2229 (2004).
[Crossref]

2002 (2)

M. Reyes, Z. Sodnik, P. Lopez, A. Alonso, T. Viera, and G. Oppenhauser, “Preliminary results of the in-orbit test of ARTEMIS with the optical ground station,” Proc. SPIE 4635, 38–49 (2002).
[Crossref]

M. Toyoshima, T. Jono, K. Nakagawa, and A. Yamamoto, “Optimum divergence angle of a Gaussian beam wave in the presence of random jitter in free-space laser communication systems,” J. Opt. Soc. Am. A 19(3), 567–571 (2002).
[Crossref] [PubMed]

2001 (1)

2000 (1)

J. Shoemaker, P. Brooks, E. Korevaar, G. Arnold, A. Das, J. Stubstad, and R. G. Hay, “The space technology research vehicle (STRV) −2 program,” Proc. SPIE 4136, 36–47 (2000).
[Crossref]

1999 (1)

G. M. Williams, B. M. Wright, W. D. Mack, and E. J. Friebele, “Projecting the performance of erbium-doped fiber devices in a space radiation environment,” Proc. SPIE 3848, 271–280 (1999).
[Crossref]

1991 (1)

B. Laurent and O. Duchmann, “The Silex Project: The first European optical intersatellite link experiment,” Proc. SPIE 1417, 2–12 (1991).
[Crossref]

Alonso, A.

M. Reyes, Z. Sodnik, P. Lopez, A. Alonso, T. Viera, and G. Oppenhauser, “Preliminary results of the in-orbit test of ARTEMIS with the optical ground station,” Proc. SPIE 4635, 38–49 (2002).
[Crossref]

Arnold, G.

J. Shoemaker, P. Brooks, E. Korevaar, G. Arnold, A. Das, J. Stubstad, and R. G. Hay, “The space technology research vehicle (STRV) −2 program,” Proc. SPIE 4136, 36–47 (2000).
[Crossref]

Berghmans, F.

Berné, O.

O. Berné, M. Caussanel, and O. Gilard, “A model for the prediction of EDFA gain in a space radiation environment,” IEEE Photon. Technol. Lett. 16(10), 2227–2229 (2004).
[Crossref]

Biswas, A.

A. Biswas, M. W. Wright, J. Kovalik, and S. Piazzolla, “Uplink beacon laser for Mars laser communication demonstration (MLCD),” Proc. SPIE 5712, 93–100 (2005).
[Crossref]

Boukenter, A.

S. Girard, J. Kuhnhenn, A. Gusarov, B. Brichard, M. Van Uffelen, Y. Ouerdane, A. Boukenter, and C. Marcandella, “Radiation effects on silica-based optical fibers: recent advances and future challenges,” IEEE Trans. Nucl. Sci. 60(3), 2015–2036 (2013).
[Crossref]

Brichard, B.

S. Girard, J. Kuhnhenn, A. Gusarov, B. Brichard, M. Van Uffelen, Y. Ouerdane, A. Boukenter, and C. Marcandella, “Radiation effects on silica-based optical fibers: recent advances and future challenges,” IEEE Trans. Nucl. Sci. 60(3), 2015–2036 (2013).
[Crossref]

Brooks, P.

J. Shoemaker, P. Brooks, E. Korevaar, G. Arnold, A. Das, J. Stubstad, and R. G. Hay, “The space technology research vehicle (STRV) −2 program,” Proc. SPIE 4136, 36–47 (2000).
[Crossref]

Caussanel, M.

O. Berné, M. Caussanel, and O. Gilard, “A model for the prediction of EDFA gain in a space radiation environment,” IEEE Photon. Technol. Lett. 16(10), 2227–2229 (2004).
[Crossref]

Comerón, A.

Dang, A.

Das, A.

J. Shoemaker, P. Brooks, E. Korevaar, G. Arnold, A. Das, J. Stubstad, and R. G. Hay, “The space technology research vehicle (STRV) −2 program,” Proc. SPIE 4136, 36–47 (2000).
[Crossref]

Ding, J. C.

Dios, F.

Du, W. H.

Duchmann, O.

B. Laurent and O. Duchmann, “The Silex Project: The first European optical intersatellite link experiment,” Proc. SPIE 1417, 2–12 (1991).
[Crossref]

Friebele, E. J.

G. M. Williams, B. M. Wright, W. D. Mack, and E. J. Friebele, “Projecting the performance of erbium-doped fiber devices in a space radiation environment,” Proc. SPIE 3848, 271–280 (1999).
[Crossref]

Gilard, O.

O. Berné, M. Caussanel, and O. Gilard, “A model for the prediction of EDFA gain in a space radiation environment,” IEEE Photon. Technol. Lett. 16(10), 2227–2229 (2004).
[Crossref]

Girard, S.

S. Girard, J. Kuhnhenn, A. Gusarov, B. Brichard, M. Van Uffelen, Y. Ouerdane, A. Boukenter, and C. Marcandella, “Radiation effects on silica-based optical fibers: recent advances and future challenges,” IEEE Trans. Nucl. Sci. 60(3), 2015–2036 (2013).
[Crossref]

Gunn, D.

Guo, H.

Gusarov, A.

S. Girard, J. Kuhnhenn, A. Gusarov, B. Brichard, M. Van Uffelen, Y. Ouerdane, A. Boukenter, and C. Marcandella, “Radiation effects on silica-based optical fibers: recent advances and future challenges,” IEEE Trans. Nucl. Sci. 60(3), 2015–2036 (2013).
[Crossref]

A. Gusarov, M. V. Uffelen, M. Hotoleanu, H. Thienpont, and F. Berghmans, “Radiation sensitivity of EDFAs based on highly er-doped fibers,” J. Lightwave Technol. 27(11), 1540–1545 (2009).
[Crossref]

Hay, R. G.

J. Shoemaker, P. Brooks, E. Korevaar, G. Arnold, A. Das, J. Stubstad, and R. G. Hay, “The space technology research vehicle (STRV) −2 program,” Proc. SPIE 4136, 36–47 (2000).
[Crossref]

Hotoleanu, M.

Jiang, Y. J.

Jono, T.

Korevaar, E.

J. Shoemaker, P. Brooks, E. Korevaar, G. Arnold, A. Das, J. Stubstad, and R. G. Hay, “The space technology research vehicle (STRV) −2 program,” Proc. SPIE 4136, 36–47 (2000).
[Crossref]

Kovalik, J.

A. Biswas, M. W. Wright, J. Kovalik, and S. Piazzolla, “Uplink beacon laser for Mars laser communication demonstration (MLCD),” Proc. SPIE 5712, 93–100 (2005).
[Crossref]

Kuhnhenn, J.

S. Girard, J. Kuhnhenn, A. Gusarov, B. Brichard, M. Van Uffelen, Y. Ouerdane, A. Boukenter, and C. Marcandella, “Radiation effects on silica-based optical fibers: recent advances and future challenges,” IEEE Trans. Nucl. Sci. 60(3), 2015–2036 (2013).
[Crossref]

Laurent, B.

B. Laurent and O. Duchmann, “The Silex Project: The first European optical intersatellite link experiment,” Proc. SPIE 1417, 2–12 (1991).
[Crossref]

Li, M.

Li, Y.

Lopez, P.

M. Reyes, Z. Sodnik, P. Lopez, A. Alonso, T. Viera, and G. Oppenhauser, “Preliminary results of the in-orbit test of ARTEMIS with the optical ground station,” Proc. SPIE 4635, 38–49 (2002).
[Crossref]

Luo, B.

Ma, J.

Mack, W. D.

G. M. Williams, B. M. Wright, W. D. Mack, and E. J. Friebele, “Projecting the performance of erbium-doped fiber devices in a space radiation environment,” Proc. SPIE 3848, 271–280 (1999).
[Crossref]

Marcandella, C.

S. Girard, J. Kuhnhenn, A. Gusarov, B. Brichard, M. Van Uffelen, Y. Ouerdane, A. Boukenter, and C. Marcandella, “Radiation effects on silica-based optical fibers: recent advances and future challenges,” IEEE Trans. Nucl. Sci. 60(3), 2015–2036 (2013).
[Crossref]

Nakagawa, K.

Oppenhauser, G.

M. Reyes, Z. Sodnik, P. Lopez, A. Alonso, T. Viera, and G. Oppenhauser, “Preliminary results of the in-orbit test of ARTEMIS with the optical ground station,” Proc. SPIE 4635, 38–49 (2002).
[Crossref]

Ouerdane, Y.

S. Girard, J. Kuhnhenn, A. Gusarov, B. Brichard, M. Van Uffelen, Y. Ouerdane, A. Boukenter, and C. Marcandella, “Radiation effects on silica-based optical fibers: recent advances and future challenges,” IEEE Trans. Nucl. Sci. 60(3), 2015–2036 (2013).
[Crossref]

Piazzolla, S.

A. Biswas, M. W. Wright, J. Kovalik, and S. Piazzolla, “Uplink beacon laser for Mars laser communication demonstration (MLCD),” Proc. SPIE 5712, 93–100 (2005).
[Crossref]

Ren, Y.

Reyes, M.

M. Reyes, Z. Sodnik, P. Lopez, A. Alonso, T. Viera, and G. Oppenhauser, “Preliminary results of the in-orbit test of ARTEMIS with the optical ground station,” Proc. SPIE 4635, 38–49 (2002).
[Crossref]

Rodriguez-Gomez, A.

Rose, T. S.

Rubio, J. A.

Shoemaker, J.

J. Shoemaker, P. Brooks, E. Korevaar, G. Arnold, A. Das, J. Stubstad, and R. G. Hay, “The space technology research vehicle (STRV) −2 program,” Proc. SPIE 4136, 36–47 (2000).
[Crossref]

Sodnik, Z.

M. Reyes, Z. Sodnik, P. Lopez, A. Alonso, T. Viera, and G. Oppenhauser, “Preliminary results of the in-orbit test of ARTEMIS with the optical ground station,” Proc. SPIE 4635, 38–49 (2002).
[Crossref]

Song, Y. J.

Stubstad, J.

J. Shoemaker, P. Brooks, E. Korevaar, G. Arnold, A. Das, J. Stubstad, and R. G. Hay, “The space technology research vehicle (STRV) −2 program,” Proc. SPIE 4136, 36–47 (2000).
[Crossref]

Tan, L. Y.

Tang, M. H.

Thienpont, H.

Toyoshima, M.

Uffelen, M. V.

Valley, G. C.

Van Uffelen, M.

S. Girard, J. Kuhnhenn, A. Gusarov, B. Brichard, M. Van Uffelen, Y. Ouerdane, A. Boukenter, and C. Marcandella, “Radiation effects on silica-based optical fibers: recent advances and future challenges,” IEEE Trans. Nucl. Sci. 60(3), 2015–2036 (2013).
[Crossref]

Viera, T.

M. Reyes, Z. Sodnik, P. Lopez, A. Alonso, T. Viera, and G. Oppenhauser, “Preliminary results of the in-orbit test of ARTEMIS with the optical ground station,” Proc. SPIE 4635, 38–49 (2002).
[Crossref]

Williams, G. M.

G. M. Williams, B. M. Wright, W. D. Mack, and E. J. Friebele, “Projecting the performance of erbium-doped fiber devices in a space radiation environment,” Proc. SPIE 3848, 271–280 (1999).
[Crossref]

Wright, B. M.

G. M. Williams, B. M. Wright, W. D. Mack, and E. J. Friebele, “Projecting the performance of erbium-doped fiber devices in a space radiation environment,” Proc. SPIE 3848, 271–280 (1999).
[Crossref]

Wright, M. W.

A. Biswas, M. W. Wright, J. Kovalik, and S. Piazzolla, “Uplink beacon laser for Mars laser communication demonstration (MLCD),” Proc. SPIE 5712, 93–100 (2005).
[Crossref]

Yamamoto, A.

Yu, S. Y.

Zhao, S.

Appl. Opt. (1)

IEEE Photon. Technol. Lett. (1)

O. Berné, M. Caussanel, and O. Gilard, “A model for the prediction of EDFA gain in a space radiation environment,” IEEE Photon. Technol. Lett. 16(10), 2227–2229 (2004).
[Crossref]

IEEE Trans. Nucl. Sci. (1)

S. Girard, J. Kuhnhenn, A. Gusarov, B. Brichard, M. Van Uffelen, Y. Ouerdane, A. Boukenter, and C. Marcandella, “Radiation effects on silica-based optical fibers: recent advances and future challenges,” IEEE Trans. Nucl. Sci. 60(3), 2015–2036 (2013).
[Crossref]

J. Lightwave Technol. (2)

J. Opt. Soc. Am. A (1)

Opt. Lett. (3)

Proc. SPIE (5)

G. M. Williams, B. M. Wright, W. D. Mack, and E. J. Friebele, “Projecting the performance of erbium-doped fiber devices in a space radiation environment,” Proc. SPIE 3848, 271–280 (1999).
[Crossref]

J. Shoemaker, P. Brooks, E. Korevaar, G. Arnold, A. Das, J. Stubstad, and R. G. Hay, “The space technology research vehicle (STRV) −2 program,” Proc. SPIE 4136, 36–47 (2000).
[Crossref]

A. Biswas, M. W. Wright, J. Kovalik, and S. Piazzolla, “Uplink beacon laser for Mars laser communication demonstration (MLCD),” Proc. SPIE 5712, 93–100 (2005).
[Crossref]

B. Laurent and O. Duchmann, “The Silex Project: The first European optical intersatellite link experiment,” Proc. SPIE 1417, 2–12 (1991).
[Crossref]

M. Reyes, Z. Sodnik, P. Lopez, A. Alonso, T. Viera, and G. Oppenhauser, “Preliminary results of the in-orbit test of ARTEMIS with the optical ground station,” Proc. SPIE 4635, 38–49 (2002).
[Crossref]

Other (3)

L. C. Andrews and R. L. Phillips, “Laser beam propagation through random media,” (SPIE Optical Engineering Press, 1998).

M. K. Jackson and M. Movassaghi, “An accurate compact EDFA model,” (Eur. Conf. Optical Communication, Munich, Germany, 2000).

P. C. Becker, N. A. Olsson, and J. R. Simpson, Erbium-Doped Fiber Amplifiers: Fundamentals and Technology (San Diego, CD: Academic Press, 1999).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1 α R A D of 1550nm and 980nm, and G B (gain of EDFA) versus dose of radiation at 20 ° C and 73 ° C .
Fig 2
Fig 2 BER performance versus dose of radiation at 20 ° C and 73 ° C .
Fig. 3
Fig. 3 BER performance versus divergence-angle with different dose of radiation, the corresponding G B (gain of EDFA) is shown in the legend.
Fig. 4
Fig. 4 BER performance versus divergence-angle with different dose of radiation.
Fig. 5
Fig. 5 BER performance versus W 0 with different dose of radiation.

Equations (20)

Equations on this page are rendered with MathJax. Learn more.

d P s / d z = ( α s + g s ) N 2 P s ( α s + α s ' + α s R A D ) P s
d P p / d z = α p N 2 P p ( α p + α p ' + α p R A D ) P p
N 2 = α p P p / ν p + α s P s / ν s α p P p / ν p + ( α s + g s ) P s / ν s
α 1310 R A D = c R 1 f D f
α ( λ ) R A D = ( 1310 λ 0 ) 2 ( λ λ 0 ) 2 c R 1 f D f
B E R O O K 0 = 1 1 / 4 [ e r f c ( ( γ m 1 ) / 2 σ 1 ) + e r f c ( ( γ m 0 ) / 2 σ 0 ) ]
m 1 = G A η ( G B I s i n + I A S E + η c p G B I b ) + I d c
m 0 = G A η ( I A S E + η c p G B I b ) + I d c
σ 1 2 = 2 G A 2 F η 2 G B I s i n I A S E B e / B o + 1 / 2 G A 2 F η 2 I A S E 2 B e ( 2 B o B e ) / B o 2 + 2 G A 2 F e η B e ( G B I s i n + μ I A S E + η c p G B I b ) + 4 k b T B e / R L
σ 0 2 = 1 / 2 G A 2 F η 2 I A S E 2 B e ( 2 B o B e ) / B o 2 + 2 G A 2 F e η B e ( μ I A S E + η c p G B I b ) + 4 k b T B e / R L
I s i n = e h ν s η c p P i n τ T 2 D r 2 ( θ L ) 2 τ R
I A S E = e h ν s P A S E
B E R O O K = 0 B E R O O K 0 P w ( I ) d I
P w ( I ) = 0 P ( r ) P r ( I ) d r
P ( r ) = r σ r 2 exp ( r 2 2 σ r 2 )
P r ( I ) = 1 2 π σ I 2 ( r , L ) 1 I exp ( ( ln I I ( 0 , L ) + 2 r 2 W 2 + σ I 2 ( r , L ) 2 ) 2 2 σ I 2 ( r , L ) )
σ r 2 = 2.07 h 0 H C n 2 ( z ) ( L z ) 2 W 1 / 3 ( z ) d z
σ I 2 ( r , L ) = 8.702 μ 3 k 7 / 6 ( H h 0 ) 5 / 6 sec 11 / 6 ( ζ ) + 14.508 μ 1 Λ 5 / 6 k 7 / 6 ( H h 0 ) 5 / 6 sec 11 / 6 ( ζ ) ( r 2 / W 2 )
μ 1 = h 0 H C n 2 ( h ) ξ 5 / 3 d h
μ 3 = Re h 0 H C n 2 ( h ) { ξ 5 / 6 [ Λ ξ + i ( 1 ( L / R r ) ξ ) ] 5 / 6 Λ 5 / 6 ξ 5 / 3 } d h

Metrics