Abstract

This paper analyzes the scalability in arrayed waveguide grating router (AWGR)-based interconnect architectures and demonstrates active AWGR-based switching using a distributed control plane. First, the paper analyses an all-to-all single AWGR passive interconnection with $N$ nodes and proposes a new architecture that overcomes the scalability limitation given by wavelength registration and crosstalk, by introducing multiples of smaller AWGRs $(W$ × $W)$ operating on a fewer number of wavelengths $(W < N)$ . Second, this paper demonstrates active AWGR switching with a distributed control plane, to be used when the size of the interconnection network makes the all-to-all approach using passive AWGRs impractical. In particular, an active AWGR-based TONAK switch is introduced. TONAK combines an all-optical NACK technique, which removes the need for electrical buffers at the switch input/output ports, and a TOKEN technique, which enables a distributed all-optical arbiter to handle packet contention. The experimental validation and performance study of the AWGR-based TONAK switch is presented, demonstrating the feasibility of the TONAK solution and the high throughput and low average packet latency for an up to 75% offered load.

© 2013 IEEE

PDF Article

References

You do not have subscription access to this journal. Citation lists with outbound citation links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription