Abstract

We report electrically tunable liquid-crystal-core channel waveguides, in which the lightwave guiding can be tuned among cut-off, single-mode, and multi-mode. Ultrasonic-assisted chemical etching is used to produce semicircular grooves on the optical glass substrate for encapsulating liquid crystal as the waveguide core. The liquid-crystal-core waveguide loss is reduced to the lowest value 1.3 dB/cm up to date, which is attributed to the smooth and uniform groove surface. The extinction ratio is >20 dB for optical switching application. The LC director distributions under various voltages are calculated by finite element method and the characteristics of guided modes are simulated by the full-vectorial mode solver considering the full anisotropy. The simulated waveguide characteristics are well consistent with the experimental results. The proposed liquid-crystal-core waveguide owns the features: simple and low-cost fabrication process, arbitrary device pattern, and integration with silicon platform.

© 2013 IEEE

PDF Article

References

You do not have subscription access to this journal. Citation lists with outbound citation links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription