Abstract

We demonstrate electrical tuning of the lateral leakage loss of TM-like modes in nematic liquid crystal (LC) clad shallow-etched Silicon-on-Insulator (SOI) waveguides. The refractive index of the LC layer can be modulated by applying a voltage over it. This results in a modulation of the effective index of the SOI waveguide modes. Since the leakage loss is linked to these effective indices, tunable leakage loss of the waveguides is achieved. We switch the wavelength at which the minimum in leakage loss occurs by 39.5nm (from 1564nm to 1524.5nm) in a 785nm wide waveguide. We show that the leakage loss in this waveguide can either be increased or decreased by modulating the refractive index of the LC cladding at a fixed wavelength.

© 2015 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Tuning the lateral leakage loss of TM-like modes in shallow-etched waveguides using liquid crystals

Thomas Ako, Jeroen Beeckman, Wim Bogaerts, and Kristiaan Neyts
Appl. Opt. 53(2) 214-220 (2014)

A design method of lithium niobate on insulator ridge waveguides without leakage loss

Emi Saitoh, Yuki Kawaguchi, Kunimasa Saitoh, and Masanori Koshiba
Opt. Express 19(17) 15833-15842 (2011)

Low-loss silicon-on-insulator shallow-ridge TE and TM waveguides formed using thermal oxidation

R. Pafchek, R. Tummidi, J. Li, M. A. Webster, E. Chen, and T. L. Koch
Appl. Opt. 48(5) 958-963 (2009)

References

  • View by:
  • |
  • |
  • |

  1. M. Heck, H.-W. Chen, A. Fang, B. Koch, D. Liang, H. Park, M. Sysak, and J. Bowers, “Hybrid silicon photonics for optical interconnects,” IEEE J. Sel. Top. Quantum Electron. 17, 333–346 (2011).
    [Crossref]
  2. J. Doylend and A. Knights, “The evolution of silicon photonics as an enabling technology for optical interconnection,” Laser Photon. Rev. 6, 504–525 (2012).
    [Crossref]
  3. P. Dong, W. Qian, S. Liao, H. Liang, C. Kung, N. Feng, R. Shafiiha, J. Fong, D. Feng, A. Krishnamoorthy, and M. Asghari, “Low loss shallow-ridge silicon waveguides,” Opt. Express 18, 14474–14479 (2010).
    [Crossref] [PubMed]
  4. S. K. Selvaraja, W. Bogaerts, P. Absil, D. Van Thourhout, and R. Baets, “Record low-loss hybrid rib/wire waveguides for silicon photonic circuits,” in “Group IV Photonics, 7th International conference, Proceedings,” (IEEE, 2010), p. 3.
  5. M. Webster, R. Pafchek, A. Mitchell, and T. Koch, “Width dependence of inherent tm-mode lateral leakage loss in silicon-on-insulator ridge waveguides,” IEEE Photon. Technol. Lett. 19, 429–431 (2007).
    [Crossref]
  6. R. Pafchek, R. Tummidi, J. Li, M. Webster, E. Chen, and T. Koch, “Low-loss silicon-on-insulator shallow-ridge te and tm waveguides formed using thermal oxidation,” Appl. Opt. 48, 958–963 (2009).
    [Crossref] [PubMed]
  7. T. Nguyen, R. Tummidi, T. Koch, and A. Mitchell, “Lateral leakage of tm-like mode in thin-ridge silicon-on-insulator bent waveguides and ring resonators,” Opt. Express 187243–7252 (2010).
    [Crossref]
  8. M. Koshiba, K. Kakihara, and K. Saitoh, “Reduced lateral leakage losses in tm-like modes in silicon-on-insulator ridge waveguides,” Opt. Lett. 33, 2008–2010 (2008).
    [Crossref] [PubMed]
  9. K. Kakihara, K. Saitoh, and M. Koshiba, “Generalized simple theory for estimating lateral leakage loss behavior in silicon-on-insulator ridge waveguides,” J. Lightwave Technol. 27, 5492–5499 (2009).
    [Crossref]
  10. N. Dalvand, T. Nguyen, R. Tummidi, T. Koch, and A. Mitchell, “Thin-ridge silicon-on-insulator waveguides with directional control of lateral leakage radiation,” Opt. Express 19, 5635–5643 (2011).
    [Crossref] [PubMed]
  11. T. Nguyen, R. Tummidi, T. Koch, and A. Mitchell, “Rigorous modeling of lateral leakage loss in soi thin-ridge waveguides and couplers,” IEEE Photon. Technol. Lett. 21, 486–488 (2009).
    [Crossref]
  12. T. Ako, J. Beeckman, W. Bogaerts, and K. Neyts, “Tuning the lateral leakage loss of tm-like modes in shallow-etched waveguides using liquid crystals,” Appl. Opt. 53, 214–220 (2014).
    [Crossref] [PubMed]
  13. W. Cort, J. Beeckman, R. James, F. Fernandez, R. Baets, and K. Neyts, “Tuning of silicon-on-insulator ring resonators with liquid crystal cladding using the longitudinal field component,” Opt. Lett. 34, 2054–2056 (2009).
    [Crossref] [PubMed]
  14. W. Cort, J. Beeckman, T. Claes, K. Neyts, and R. Baets, “Wide tuning of silicon-on-insulator ring resonators with a liquid crystal cladding,” Opt. Lett. 36, 3876–3878 (2011).
    [Crossref] [PubMed]
  15. V. G. Chigrinov, “Photoaligning and photopatterning a new challenge in liquid crystal photonics,” Crystals 3, 149–162 (2013).
    [Crossref]
  16. J. Li, S.-T. Wu, S. Brugioni, R. Meucci, and S. Faetti, “Infrared refractive indices of liquid crystals,” J. Appl. Phys. 97, 073501 (2005).
    [Crossref]
  17. H. Desmet, K. Neyts, and R. Baets, “Modeling nematic liquid crystals in the neighborhood of edges,” J. Appl. Phys. 98, 123517 (2005).
    [Crossref]
  18. N. Dalvand, T. Nguyen, T. Koch, and A. Mitchell, “Thin shallow-ridge silicon-on-insulator waveguide transitions and tapers,” IEEE Photon. Technol. Lett. 25, 163–166 (2013).
    [Crossref]

2014 (1)

2013 (2)

V. G. Chigrinov, “Photoaligning and photopatterning a new challenge in liquid crystal photonics,” Crystals 3, 149–162 (2013).
[Crossref]

N. Dalvand, T. Nguyen, T. Koch, and A. Mitchell, “Thin shallow-ridge silicon-on-insulator waveguide transitions and tapers,” IEEE Photon. Technol. Lett. 25, 163–166 (2013).
[Crossref]

2012 (1)

J. Doylend and A. Knights, “The evolution of silicon photonics as an enabling technology for optical interconnection,” Laser Photon. Rev. 6, 504–525 (2012).
[Crossref]

2011 (3)

2010 (2)

2009 (4)

2008 (1)

2007 (1)

M. Webster, R. Pafchek, A. Mitchell, and T. Koch, “Width dependence of inherent tm-mode lateral leakage loss in silicon-on-insulator ridge waveguides,” IEEE Photon. Technol. Lett. 19, 429–431 (2007).
[Crossref]

2005 (2)

J. Li, S.-T. Wu, S. Brugioni, R. Meucci, and S. Faetti, “Infrared refractive indices of liquid crystals,” J. Appl. Phys. 97, 073501 (2005).
[Crossref]

H. Desmet, K. Neyts, and R. Baets, “Modeling nematic liquid crystals in the neighborhood of edges,” J. Appl. Phys. 98, 123517 (2005).
[Crossref]

Absil, P.

S. K. Selvaraja, W. Bogaerts, P. Absil, D. Van Thourhout, and R. Baets, “Record low-loss hybrid rib/wire waveguides for silicon photonic circuits,” in “Group IV Photonics, 7th International conference, Proceedings,” (IEEE, 2010), p. 3.

Ako, T.

Asghari, M.

Baets, R.

W. Cort, J. Beeckman, T. Claes, K. Neyts, and R. Baets, “Wide tuning of silicon-on-insulator ring resonators with a liquid crystal cladding,” Opt. Lett. 36, 3876–3878 (2011).
[Crossref] [PubMed]

W. Cort, J. Beeckman, R. James, F. Fernandez, R. Baets, and K. Neyts, “Tuning of silicon-on-insulator ring resonators with liquid crystal cladding using the longitudinal field component,” Opt. Lett. 34, 2054–2056 (2009).
[Crossref] [PubMed]

H. Desmet, K. Neyts, and R. Baets, “Modeling nematic liquid crystals in the neighborhood of edges,” J. Appl. Phys. 98, 123517 (2005).
[Crossref]

S. K. Selvaraja, W. Bogaerts, P. Absil, D. Van Thourhout, and R. Baets, “Record low-loss hybrid rib/wire waveguides for silicon photonic circuits,” in “Group IV Photonics, 7th International conference, Proceedings,” (IEEE, 2010), p. 3.

Beeckman, J.

Bogaerts, W.

T. Ako, J. Beeckman, W. Bogaerts, and K. Neyts, “Tuning the lateral leakage loss of tm-like modes in shallow-etched waveguides using liquid crystals,” Appl. Opt. 53, 214–220 (2014).
[Crossref] [PubMed]

S. K. Selvaraja, W. Bogaerts, P. Absil, D. Van Thourhout, and R. Baets, “Record low-loss hybrid rib/wire waveguides for silicon photonic circuits,” in “Group IV Photonics, 7th International conference, Proceedings,” (IEEE, 2010), p. 3.

Bowers, J.

M. Heck, H.-W. Chen, A. Fang, B. Koch, D. Liang, H. Park, M. Sysak, and J. Bowers, “Hybrid silicon photonics for optical interconnects,” IEEE J. Sel. Top. Quantum Electron. 17, 333–346 (2011).
[Crossref]

Brugioni, S.

J. Li, S.-T. Wu, S. Brugioni, R. Meucci, and S. Faetti, “Infrared refractive indices of liquid crystals,” J. Appl. Phys. 97, 073501 (2005).
[Crossref]

Chen, E.

Chen, H.-W.

M. Heck, H.-W. Chen, A. Fang, B. Koch, D. Liang, H. Park, M. Sysak, and J. Bowers, “Hybrid silicon photonics for optical interconnects,” IEEE J. Sel. Top. Quantum Electron. 17, 333–346 (2011).
[Crossref]

Chigrinov, V. G.

V. G. Chigrinov, “Photoaligning and photopatterning a new challenge in liquid crystal photonics,” Crystals 3, 149–162 (2013).
[Crossref]

Claes, T.

Cort, W.

Dalvand, N.

N. Dalvand, T. Nguyen, T. Koch, and A. Mitchell, “Thin shallow-ridge silicon-on-insulator waveguide transitions and tapers,” IEEE Photon. Technol. Lett. 25, 163–166 (2013).
[Crossref]

N. Dalvand, T. Nguyen, R. Tummidi, T. Koch, and A. Mitchell, “Thin-ridge silicon-on-insulator waveguides with directional control of lateral leakage radiation,” Opt. Express 19, 5635–5643 (2011).
[Crossref] [PubMed]

Desmet, H.

H. Desmet, K. Neyts, and R. Baets, “Modeling nematic liquid crystals in the neighborhood of edges,” J. Appl. Phys. 98, 123517 (2005).
[Crossref]

Dong, P.

Doylend, J.

J. Doylend and A. Knights, “The evolution of silicon photonics as an enabling technology for optical interconnection,” Laser Photon. Rev. 6, 504–525 (2012).
[Crossref]

Faetti, S.

J. Li, S.-T. Wu, S. Brugioni, R. Meucci, and S. Faetti, “Infrared refractive indices of liquid crystals,” J. Appl. Phys. 97, 073501 (2005).
[Crossref]

Fang, A.

M. Heck, H.-W. Chen, A. Fang, B. Koch, D. Liang, H. Park, M. Sysak, and J. Bowers, “Hybrid silicon photonics for optical interconnects,” IEEE J. Sel. Top. Quantum Electron. 17, 333–346 (2011).
[Crossref]

Feng, D.

Feng, N.

Fernandez, F.

Fong, J.

Heck, M.

M. Heck, H.-W. Chen, A. Fang, B. Koch, D. Liang, H. Park, M. Sysak, and J. Bowers, “Hybrid silicon photonics for optical interconnects,” IEEE J. Sel. Top. Quantum Electron. 17, 333–346 (2011).
[Crossref]

James, R.

Kakihara, K.

Knights, A.

J. Doylend and A. Knights, “The evolution of silicon photonics as an enabling technology for optical interconnection,” Laser Photon. Rev. 6, 504–525 (2012).
[Crossref]

Koch, B.

M. Heck, H.-W. Chen, A. Fang, B. Koch, D. Liang, H. Park, M. Sysak, and J. Bowers, “Hybrid silicon photonics for optical interconnects,” IEEE J. Sel. Top. Quantum Electron. 17, 333–346 (2011).
[Crossref]

Koch, T.

N. Dalvand, T. Nguyen, T. Koch, and A. Mitchell, “Thin shallow-ridge silicon-on-insulator waveguide transitions and tapers,” IEEE Photon. Technol. Lett. 25, 163–166 (2013).
[Crossref]

N. Dalvand, T. Nguyen, R. Tummidi, T. Koch, and A. Mitchell, “Thin-ridge silicon-on-insulator waveguides with directional control of lateral leakage radiation,” Opt. Express 19, 5635–5643 (2011).
[Crossref] [PubMed]

T. Nguyen, R. Tummidi, T. Koch, and A. Mitchell, “Lateral leakage of tm-like mode in thin-ridge silicon-on-insulator bent waveguides and ring resonators,” Opt. Express 187243–7252 (2010).
[Crossref]

R. Pafchek, R. Tummidi, J. Li, M. Webster, E. Chen, and T. Koch, “Low-loss silicon-on-insulator shallow-ridge te and tm waveguides formed using thermal oxidation,” Appl. Opt. 48, 958–963 (2009).
[Crossref] [PubMed]

T. Nguyen, R. Tummidi, T. Koch, and A. Mitchell, “Rigorous modeling of lateral leakage loss in soi thin-ridge waveguides and couplers,” IEEE Photon. Technol. Lett. 21, 486–488 (2009).
[Crossref]

M. Webster, R. Pafchek, A. Mitchell, and T. Koch, “Width dependence of inherent tm-mode lateral leakage loss in silicon-on-insulator ridge waveguides,” IEEE Photon. Technol. Lett. 19, 429–431 (2007).
[Crossref]

Koshiba, M.

Krishnamoorthy, A.

Kung, C.

Li, J.

Liang, D.

M. Heck, H.-W. Chen, A. Fang, B. Koch, D. Liang, H. Park, M. Sysak, and J. Bowers, “Hybrid silicon photonics for optical interconnects,” IEEE J. Sel. Top. Quantum Electron. 17, 333–346 (2011).
[Crossref]

Liang, H.

Liao, S.

Meucci, R.

J. Li, S.-T. Wu, S. Brugioni, R. Meucci, and S. Faetti, “Infrared refractive indices of liquid crystals,” J. Appl. Phys. 97, 073501 (2005).
[Crossref]

Mitchell, A.

N. Dalvand, T. Nguyen, T. Koch, and A. Mitchell, “Thin shallow-ridge silicon-on-insulator waveguide transitions and tapers,” IEEE Photon. Technol. Lett. 25, 163–166 (2013).
[Crossref]

N. Dalvand, T. Nguyen, R. Tummidi, T. Koch, and A. Mitchell, “Thin-ridge silicon-on-insulator waveguides with directional control of lateral leakage radiation,” Opt. Express 19, 5635–5643 (2011).
[Crossref] [PubMed]

T. Nguyen, R. Tummidi, T. Koch, and A. Mitchell, “Lateral leakage of tm-like mode in thin-ridge silicon-on-insulator bent waveguides and ring resonators,” Opt. Express 187243–7252 (2010).
[Crossref]

T. Nguyen, R. Tummidi, T. Koch, and A. Mitchell, “Rigorous modeling of lateral leakage loss in soi thin-ridge waveguides and couplers,” IEEE Photon. Technol. Lett. 21, 486–488 (2009).
[Crossref]

M. Webster, R. Pafchek, A. Mitchell, and T. Koch, “Width dependence of inherent tm-mode lateral leakage loss in silicon-on-insulator ridge waveguides,” IEEE Photon. Technol. Lett. 19, 429–431 (2007).
[Crossref]

Neyts, K.

Nguyen, T.

N. Dalvand, T. Nguyen, T. Koch, and A. Mitchell, “Thin shallow-ridge silicon-on-insulator waveguide transitions and tapers,” IEEE Photon. Technol. Lett. 25, 163–166 (2013).
[Crossref]

N. Dalvand, T. Nguyen, R. Tummidi, T. Koch, and A. Mitchell, “Thin-ridge silicon-on-insulator waveguides with directional control of lateral leakage radiation,” Opt. Express 19, 5635–5643 (2011).
[Crossref] [PubMed]

T. Nguyen, R. Tummidi, T. Koch, and A. Mitchell, “Lateral leakage of tm-like mode in thin-ridge silicon-on-insulator bent waveguides and ring resonators,” Opt. Express 187243–7252 (2010).
[Crossref]

T. Nguyen, R. Tummidi, T. Koch, and A. Mitchell, “Rigorous modeling of lateral leakage loss in soi thin-ridge waveguides and couplers,” IEEE Photon. Technol. Lett. 21, 486–488 (2009).
[Crossref]

Pafchek, R.

R. Pafchek, R. Tummidi, J. Li, M. Webster, E. Chen, and T. Koch, “Low-loss silicon-on-insulator shallow-ridge te and tm waveguides formed using thermal oxidation,” Appl. Opt. 48, 958–963 (2009).
[Crossref] [PubMed]

M. Webster, R. Pafchek, A. Mitchell, and T. Koch, “Width dependence of inherent tm-mode lateral leakage loss in silicon-on-insulator ridge waveguides,” IEEE Photon. Technol. Lett. 19, 429–431 (2007).
[Crossref]

Park, H.

M. Heck, H.-W. Chen, A. Fang, B. Koch, D. Liang, H. Park, M. Sysak, and J. Bowers, “Hybrid silicon photonics for optical interconnects,” IEEE J. Sel. Top. Quantum Electron. 17, 333–346 (2011).
[Crossref]

Qian, W.

Saitoh, K.

Selvaraja, S. K.

S. K. Selvaraja, W. Bogaerts, P. Absil, D. Van Thourhout, and R. Baets, “Record low-loss hybrid rib/wire waveguides for silicon photonic circuits,” in “Group IV Photonics, 7th International conference, Proceedings,” (IEEE, 2010), p. 3.

Shafiiha, R.

Sysak, M.

M. Heck, H.-W. Chen, A. Fang, B. Koch, D. Liang, H. Park, M. Sysak, and J. Bowers, “Hybrid silicon photonics for optical interconnects,” IEEE J. Sel. Top. Quantum Electron. 17, 333–346 (2011).
[Crossref]

Tummidi, R.

Van Thourhout, D.

S. K. Selvaraja, W. Bogaerts, P. Absil, D. Van Thourhout, and R. Baets, “Record low-loss hybrid rib/wire waveguides for silicon photonic circuits,” in “Group IV Photonics, 7th International conference, Proceedings,” (IEEE, 2010), p. 3.

Webster, M.

R. Pafchek, R. Tummidi, J. Li, M. Webster, E. Chen, and T. Koch, “Low-loss silicon-on-insulator shallow-ridge te and tm waveguides formed using thermal oxidation,” Appl. Opt. 48, 958–963 (2009).
[Crossref] [PubMed]

M. Webster, R. Pafchek, A. Mitchell, and T. Koch, “Width dependence of inherent tm-mode lateral leakage loss in silicon-on-insulator ridge waveguides,” IEEE Photon. Technol. Lett. 19, 429–431 (2007).
[Crossref]

Wu, S.-T.

J. Li, S.-T. Wu, S. Brugioni, R. Meucci, and S. Faetti, “Infrared refractive indices of liquid crystals,” J. Appl. Phys. 97, 073501 (2005).
[Crossref]

Appl. Opt. (2)

Crystals (1)

V. G. Chigrinov, “Photoaligning and photopatterning a new challenge in liquid crystal photonics,” Crystals 3, 149–162 (2013).
[Crossref]

IEEE J. Sel. Top. Quantum Electron. (1)

M. Heck, H.-W. Chen, A. Fang, B. Koch, D. Liang, H. Park, M. Sysak, and J. Bowers, “Hybrid silicon photonics for optical interconnects,” IEEE J. Sel. Top. Quantum Electron. 17, 333–346 (2011).
[Crossref]

IEEE Photon. Technol. Lett. (3)

N. Dalvand, T. Nguyen, T. Koch, and A. Mitchell, “Thin shallow-ridge silicon-on-insulator waveguide transitions and tapers,” IEEE Photon. Technol. Lett. 25, 163–166 (2013).
[Crossref]

M. Webster, R. Pafchek, A. Mitchell, and T. Koch, “Width dependence of inherent tm-mode lateral leakage loss in silicon-on-insulator ridge waveguides,” IEEE Photon. Technol. Lett. 19, 429–431 (2007).
[Crossref]

T. Nguyen, R. Tummidi, T. Koch, and A. Mitchell, “Rigorous modeling of lateral leakage loss in soi thin-ridge waveguides and couplers,” IEEE Photon. Technol. Lett. 21, 486–488 (2009).
[Crossref]

J. Appl. Phys. (2)

J. Li, S.-T. Wu, S. Brugioni, R. Meucci, and S. Faetti, “Infrared refractive indices of liquid crystals,” J. Appl. Phys. 97, 073501 (2005).
[Crossref]

H. Desmet, K. Neyts, and R. Baets, “Modeling nematic liquid crystals in the neighborhood of edges,” J. Appl. Phys. 98, 123517 (2005).
[Crossref]

J. Lightwave Technol. (1)

Laser Photon. Rev. (1)

J. Doylend and A. Knights, “The evolution of silicon photonics as an enabling technology for optical interconnection,” Laser Photon. Rev. 6, 504–525 (2012).
[Crossref]

Opt. Express (3)

Opt. Lett. (3)

Other (1)

S. K. Selvaraja, W. Bogaerts, P. Absil, D. Van Thourhout, and R. Baets, “Record low-loss hybrid rib/wire waveguides for silicon photonic circuits,” in “Group IV Photonics, 7th International conference, Proceedings,” (IEEE, 2010), p. 3.

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (8)

Fig. 1
Fig. 1 Geometry of a shallow-etched SOI waveguide. The z-axis is perpendicular to the plane of the paper.
Fig. 2
Fig. 2 Variation of the loss with wavelength for an air-clad shallow-etched silicon waveguide. Solid curves: experimental data. Dashed curves: simulation data.
Fig. 3
Fig. 3 Schematic of the cell
Fig. 4
Fig. 4 LC cell under crossed polarizers in reflection microscopy with lines showing the orientation of the polarizer (P) and analyzer (A). (a) 0Vpp (b) 40Vpp, onset of switching in the LC cell (c) 80Vpp.
Fig. 5
Fig. 5 Comparison of the variation of loss with wavelength for air and LC clad (for 0Vpp) shallow etched SOI waveguides.
Fig. 6
Fig. 6 (a)Simulated versus measured loss values for LC clad waveguides. Solid lines: measured lateral leakage loss data. Dashed lines: simulation data. Dark dashed line: y-aligned cladding. (b)Field profiles of the various E-field components for a W = 785nm waveguide with air cladding. Notice that the y component is much stronger than the z component in the area (y distance greater than 0.11μm) occupied by the LC.
Fig. 7
Fig. 7 (a)Voltage tuning of the loss in a WD = 740nm wide LC clad waveguide. The voltage is ramped from 0Vpp (black) to 300Vpp (yellow) in steps of 20Vpp. The arrow indicates the direction in which the loss curve shifts when the applied voltage is increased. (b)Voltage dependence of the lateral leakage loss in a WD = 740nm LC clad waveguide.
Fig. 8
Fig. 8 Lateral leakage loss as a function of wavelength for increasing α.

Equations (3)

Equations on this page are rendered with MathJax. Learn more.

W = m λ n e f f , T E ( c o r e ) 2 N e f f , T M 2
n c l a d = 1 ( cos α n o ) 2 + ( sin α n e ) 2
L o s s = 0.3 L o s s L C , u n c o v e r e d + 0.7 L o s s L C , c o v e r e d

Metrics