Abstract

An SOI-based liquid-crystal (LC)-infiltrated photonic-crystal channel waveguide having rectangular air holes in a Silicon core is proposed—and has an average group index of 43 over a bandwidth of 1.02 THz, with vanishing group velocity dispersion, as well as reduced higher-order dispersion. The possible propagation losses due to coupling inefficiency are also investigated for the proposed structure. It is found that high transmission is obtained for a broad bandwidth from the output of the heterogeneous waveguide finally designed, which consists of an LC-infiltrated PhC slow waveguide surrounded by fast PhC regions on either side. The LC-infiltrated W0.7 PhC waveguide that has been designed for slow light propagation should be highly tolerant to fabrication errors—and has enhanced sensitivity in comparison with conventional PhC waveguides.

© 2010 IEEE

PDF Article

References

You do not have subscription access to this journal. Citation lists with outbound citation links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription