Abstract

In this work, we report scaling rules for the design of an all-fibered soliton-based power limiter for reamplification and reshaping (2R) regeneration process. In particular, we propose general guidelines to fix the optimum fiber length and initial power of the regenerator. We quantitatively point out the optical power limiting effect of the device enabling a significant reduction of the amplitude jitter of a degraded signal. Influence of the initial level of amplitude jitter is discussed and the results are compared with a self-phase modulation-based configuration working in the normal dispersion regime. Realistic numerical simulations in the context of 160 Gbit/s signals confirm that an efficient improvement of the signal quality can be achieved by means of such a device.

© 2010 IEEE

PDF Article

References

You do not have subscription access to this journal. Citation lists with outbound citation links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription