Abstract

This paper presents the influence of random direct current (dc) offsets on the sensitivity of dc-coupled burst-mode receivers (BMRxs). It is well known that a BMRx exhibits a noisy decision threshold, resulting in a sensitivity penalty. If the BMRx is dc coupled, an additional penalty is incurred by random dc offsets. This penalty can only be determined for a statistically significant number of fabricated BMRx samples. Using Monte Carlo (MC) simulations and a detailed BMRx model, the relationship between the variance of this random dc offset, the resulting sensitivity penalty, and BMRx yield (the fraction of fabricated BMRx samples that meets a given sensitivity specification) is evaluated as a function of various receiver parameters. The obtained curves can be used to trade off BMRx die area against sensitivity for a given yield. It is demonstrated that a thorough understanding of the relationship between BMRx sensitivity, BMRx yield, and the variance of the random dc offsets is needed to optimize a dc-coupled BMRx with respect to sensitivity and die area for a given yield. It is shown that compensation of dc offsets with a resolution of 8 bits results in a sensitivity penalty of 1 dB for a wide range of random dc offsets.

© 2006 IEEE

PDF Article

References

You do not have subscription access to this journal. Citation lists with outbound citation links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription