Abstract

An 8 8 optical matrix switch consisting of asymmetric Mach-Zehnder (MZ) interferometer switching units with a waveguide intersection was fabricated using silica-based planar lightwave circuits (PLC's) on a silicon substrate. This switching unit can realize a high extinction ratio and a wide operation wavelength range even if the coupling ratios of the directional couplers (DC's) consisting the switching unit, deviate greatly from the ideal value of 50%. A matrix switch with a DC-coupling ratio of 30% was fabricated to test the validity of the proposed geometry. The average insertion loss was 7.3 dB in the transverse electric (TE) mode and 7.5 dB in the transverse magnetic (TM) mode. The average extinction ratio was 31.2 dB in the TE mode and 31.3 dB in the TM mode. The wavelength range with an extinction ratio greater than 20 dB was over 100 nm.

[IEEE ]

PDF Article

References

You do not have subscription access to this journal. Citation lists with outbound citation links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription