Abstract

A polarization-independent 2 × 2 switch based on silicon-wire waveguides has been realized with a compact size of 600 × 500 μm2. Polarization-independent operation was achieved with a polarization-diversity technique which implements polarization splitters, TE-TM intersections, and Mach–Zehnder switches. The extinction ratios of the 2 × 2 switch for TE, TM, and a mixed polarization at a wavelength of 1550 nm were measured to be larger than 30 dB, 25 dB, and 30 dB, respectively. The measured switching powers for the TE and TM polarizations were 25 and 55 mW, respectively. The measured polarization-dependent loss was lower than 1 dB. The differential group delay (DGD) between the TE and TM modes was also evaluated using the Mueller matrix method, which was in good agreement with the values estimated from the path lengths for each mode. A path-length–compensated switch was fabricated, whose DGDs for all paths were indeed as small as ~2 ps, mainly from the access waveguides. The switch could provide an important route to develop ultra-compact polarization-independent integrated circuits based on silicon-wire waveguides.

© 2014 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Non-duplicate polarization-diversity 8 × 8 Si-wire PILOSS switch integrated with polarization splitter-rotators

Ken Tanizawa, Keijiro Suzuki, Kazuhiro Ikeda, Shu Namiki, and Hitoshi Kawashima
Opt. Express 25(10) 10885-10892 (2017)

Ultra-compact 8 × 8 strictly-non-blocking Si-wire PILOSS switch

Keijiro Suzuki, Ken Tanizawa, Takashi Matsukawa, Guangwei Cong, Sang-Hun Kim, Satoshi Suda, Morifumi Ohno, Tadashi Chiba, Hirofumi Tadokoro, Masashi Yanagihara, Yasushi Igarashi, Meishoku Masahara, Shu Namiki, and Hitoshi Kawashima
Opt. Express 22(4) 3887-3894 (2014)

Compact 1 × N thermo-optic switches based on silicon photonic wire waveguides

Tao Chu, Hirohito Yamada, Satomi Ishida, and Yasuhiko Arakawa
Opt. Express 13(25) 10109-10114 (2005)

References

  • View by:
  • |
  • |
  • |

  1. S. Nakamura, S. Takahashi, M. Sakauchi, T. Hino, M. Yu, and G. Lo, “Wavelength selective switching with one-chip silicon photonic circuit including 8 × 8 matrix switch,” Optical Fiber Communication Conference, OSA Technical Digest, paper OTuM.2 (2011).
    [Crossref]
  2. B. G. Lee, A. Rylyakov, W. M. J. Green, S. Assefa, C. W. Baks, R. Rimolo-Donadio, D. Kuchta, M. Khater, T. Barwicz, C. Reinholm, E. Kiewra, S. Shank, C. Schow, and Y. A. Vlasov, “Four- and Eight-Port Photonic Switches Monolithically Integrated with Digital CMOS Logic and Driver Circuits,” Optical Fiber Communication Conference, OSA Technical Digest, paper PDP5C.3 (2013).
    [Crossref]
  3. S. Namiki, T. Kurosu, K. Tanizawa, J. Kurumida, T. Hasama, H. Ishikawa, T. Nakatogawa, M. Nakamura, and K. Oyamada, “Ultrahigh-definition video transmission and extremely green optical networks,” IEEE J. Sel. Top. Quantum Electron. 17(2), 446–457 (2011).
    [Crossref]
  4. S. Nakamura, S. Takahashi, I. Ogura, J. Ushida, K. Kurata, T. Hino, H. Takeshita, A. Tajima, M.-B. Yu, and G.-Q. Lo, “High extinction ratio optical switching independently of temperature with silicon photonic 1×8 switch, ” Optical Fiber Communication Conference, OSA Technical Digest, paper OTu2I.3 (2012).
  5. G. W. Cong, T. Matsukawa, T. Chiba, H. Tadokoro, M. Yanagihara, M. Ohno, H. Kawashima, H. Kuwatsuka, Y. Igarashi, M. Masahara, and H. Ishikawa, “Large current MOSFET on photonic silicon-on-insulator wafers and its monolithic integration with a thermo-optic 2 × 2 Mach-Zehnder switch,” Opt. Express 21(6), 6889–6894 (2013).
    [Crossref] [PubMed]
  6. K. Suzuki, K. Tanizawa, T. Matsukawa, G. W. Cong, S.-H. Kim, S. Suda, M. Ohno, T. Chiba, H. Tadokoro, M. Yanagihara, Y. Igarashi, M. Masahara, S. Namiki, and H. Kawashima, “Ultra-compact 8 × 8 strictly-non-blocking Si-wire PILOSS switch,” Opt. Express 22(4), 3887–3894 (2014).
    [Crossref] [PubMed]
  7. P. Dumon, G. Priem, L. R. Numes, W. Bogaerts, D. V. Thourhout, P. Bienstman, T. K. Liang, M. Tsuchiya, P. Jaenen, S. Beckx, J. Wouters, and R. Baets, “Linear and nonlinear nanophotonic devices based on silicon-on-insulator wire waveguides,” Jpn. J. Appl. Phys. 45(8B), 6589–6602 (2006).
  8. E. Dulkeith, F. Xia, L. Schares, W. M. J. Green, and Y. A. Vlasov, “Group index and group velocity dispersion in silicon-on-insulator photonic wires,” Opt. Express 14(9), 3853–3863 (2006).
    [Crossref] [PubMed]
  9. Q. Wang and J. Yao, “A high speed 2x2 electro-optic switch using a polarization modulator,” Opt. Express 15(25), 16500–16505 (2007).
    [Crossref] [PubMed]
  10. W. Bogaerts, D. Taillaert, P. Dumon, D. Van Thourhout, R. Baets, and E. Pluk, “A polarization-diversity wavelength duplexer circuit in silicon-on-insulator photonic wires,” Opt. Express 15(4), 1567–1578 (2007).
    [Crossref] [PubMed]
  11. T. Barwicz, M. R. Watts, M. A. Popović, P. T. Rakich, L. Socci, F. X. Kärtner, E. P. Ippen, and H. I. Smith, “Polarization-transparent microphotonic devices in the strong confinement limit,” Nat. Photonics 1(1), 57–60 (2007).
    [Crossref]
  12. H. Fukuda, K. Yamada, T. Tsuchizawa, T. Watanabe, H. Shinojima, and S. Itabashi, “Silicon photonic circuit with polarization diversity,” Opt. Express 16(7), 4872–4880 (2008).
    [Crossref] [PubMed]
  13. J. Zhang, H. Zhang, S. Chen, M. Yu, G. Q. Lo, and D. L. Kwong, “A tunable polarization diversity silicon photonics filter,” Opt. Express 15(25), 16500–16505 (2007).
    [PubMed]
  14. C. R. Doerr, P. J. Winzer, Y. K. Chen, S. Chandrasekhar, M. S. Rasras, L. Chen, T. Y. Liow, K. W. Ang, and G.-Q. Lo, “Monolithic polarization and phase diversity coherent receiver in silicon,” J. Lightwave Technol. 28(4), 520–525 (2010).
    [Crossref]
  15. S.-H. Kim, Y. Shoji, G. Cong, H. Kawashima, T. Hasama, and H. Ishikawa, “Polarization-diversity 2 × 2 switch with silicon-wire waveguide,” European Conference and Exhibition on Optical Communication, Technical Digest, paper We4B.5 (2013).
  16. H. Fukuda, K. Yamada, T. Tsuchizawa, T. Watanabe, H. Shinojima, and S. Itabashi, “Ultrasmall polarization splitter based on silicon wire waveguides,” Opt. Express 14(25), 12401–12408 (2006).
    [Crossref] [PubMed]
  17. S.-H. Kim, G. Cong, H. Kawashima, T. Hasama, and H. Ishikawa, “Tilted MMI crossings based on silicon wire waveguide,” Opt. Express 22(3), 2545–2552 (2014).
    [Crossref] [PubMed]
  18. V. R. Almeida, R. R. Panepucci, and M. Lipson, “Nanotaper for compact mode conversion,” Opt. Lett. 28(15), 1302–1304 (2003).
    [Crossref] [PubMed]
  19. H. Dong, P. Shum, M. Yan, J. Q. Zhou, G. X. Ning, Y. D. Gong, and C. Q. Wu, “Generalized Mueller matrix method for polarization mode dispersion measurement in a system with polarization-dependent loss or gain,” Opt. Express 14(12), 5067–5072 (2006).
    [Crossref] [PubMed]
  20. T. Shoji, T. Tsuchizawa, T. Watanabe, K. Yamada, and H. Morita, “Low loss mode size converter from 0.3um square Si wire waveguides to singlemode fibres,” Electron. Lett. 38(25), 1669–1670 (2002).
    [Crossref]
  21. L. Chen, C. R. Doerr, and Y.-K. Chen, “Compact polarization rotator on silicon for polarization-diversified circuits,” Opt. Lett. 36(4), 469–471 (2011).
    [Crossref] [PubMed]
  22. K. Jinguji, N. Takato, A. Sugita, and M. Kawachi, “Mach-Zehnder interferometer type optical wavelength-flattened coupling ratio,” Electron. Lett. 26(17), 1326–1327 (1990).
    [Crossref]
  23. J. Van Campenhout, W. M. J. Green, and Y. A. Vlasov, “Design of a digital, ultra-broadband electro-optic switch for reconfigurable optical networks-on-chip,” Opt. Express 17(26), 23793–23808 (2009).
    [Crossref] [PubMed]

2014 (2)

2013 (1)

2011 (2)

S. Namiki, T. Kurosu, K. Tanizawa, J. Kurumida, T. Hasama, H. Ishikawa, T. Nakatogawa, M. Nakamura, and K. Oyamada, “Ultrahigh-definition video transmission and extremely green optical networks,” IEEE J. Sel. Top. Quantum Electron. 17(2), 446–457 (2011).
[Crossref]

L. Chen, C. R. Doerr, and Y.-K. Chen, “Compact polarization rotator on silicon for polarization-diversified circuits,” Opt. Lett. 36(4), 469–471 (2011).
[Crossref] [PubMed]

2010 (1)

2009 (1)

2008 (1)

2007 (4)

2006 (4)

2003 (1)

2002 (1)

T. Shoji, T. Tsuchizawa, T. Watanabe, K. Yamada, and H. Morita, “Low loss mode size converter from 0.3um square Si wire waveguides to singlemode fibres,” Electron. Lett. 38(25), 1669–1670 (2002).
[Crossref]

1990 (1)

K. Jinguji, N. Takato, A. Sugita, and M. Kawachi, “Mach-Zehnder interferometer type optical wavelength-flattened coupling ratio,” Electron. Lett. 26(17), 1326–1327 (1990).
[Crossref]

Almeida, V. R.

Ang, K. W.

Baets, R.

W. Bogaerts, D. Taillaert, P. Dumon, D. Van Thourhout, R. Baets, and E. Pluk, “A polarization-diversity wavelength duplexer circuit in silicon-on-insulator photonic wires,” Opt. Express 15(4), 1567–1578 (2007).
[Crossref] [PubMed]

P. Dumon, G. Priem, L. R. Numes, W. Bogaerts, D. V. Thourhout, P. Bienstman, T. K. Liang, M. Tsuchiya, P. Jaenen, S. Beckx, J. Wouters, and R. Baets, “Linear and nonlinear nanophotonic devices based on silicon-on-insulator wire waveguides,” Jpn. J. Appl. Phys. 45(8B), 6589–6602 (2006).

Barwicz, T.

T. Barwicz, M. R. Watts, M. A. Popović, P. T. Rakich, L. Socci, F. X. Kärtner, E. P. Ippen, and H. I. Smith, “Polarization-transparent microphotonic devices in the strong confinement limit,” Nat. Photonics 1(1), 57–60 (2007).
[Crossref]

Beckx, S.

P. Dumon, G. Priem, L. R. Numes, W. Bogaerts, D. V. Thourhout, P. Bienstman, T. K. Liang, M. Tsuchiya, P. Jaenen, S. Beckx, J. Wouters, and R. Baets, “Linear and nonlinear nanophotonic devices based on silicon-on-insulator wire waveguides,” Jpn. J. Appl. Phys. 45(8B), 6589–6602 (2006).

Bienstman, P.

P. Dumon, G. Priem, L. R. Numes, W. Bogaerts, D. V. Thourhout, P. Bienstman, T. K. Liang, M. Tsuchiya, P. Jaenen, S. Beckx, J. Wouters, and R. Baets, “Linear and nonlinear nanophotonic devices based on silicon-on-insulator wire waveguides,” Jpn. J. Appl. Phys. 45(8B), 6589–6602 (2006).

Bogaerts, W.

W. Bogaerts, D. Taillaert, P. Dumon, D. Van Thourhout, R. Baets, and E. Pluk, “A polarization-diversity wavelength duplexer circuit in silicon-on-insulator photonic wires,” Opt. Express 15(4), 1567–1578 (2007).
[Crossref] [PubMed]

P. Dumon, G. Priem, L. R. Numes, W. Bogaerts, D. V. Thourhout, P. Bienstman, T. K. Liang, M. Tsuchiya, P. Jaenen, S. Beckx, J. Wouters, and R. Baets, “Linear and nonlinear nanophotonic devices based on silicon-on-insulator wire waveguides,” Jpn. J. Appl. Phys. 45(8B), 6589–6602 (2006).

Chandrasekhar, S.

Chen, L.

Chen, S.

Chen, Y. K.

Chen, Y.-K.

Chiba, T.

Cong, G.

Cong, G. W.

Doerr, C. R.

Dong, H.

Dulkeith, E.

Dumon, P.

W. Bogaerts, D. Taillaert, P. Dumon, D. Van Thourhout, R. Baets, and E. Pluk, “A polarization-diversity wavelength duplexer circuit in silicon-on-insulator photonic wires,” Opt. Express 15(4), 1567–1578 (2007).
[Crossref] [PubMed]

P. Dumon, G. Priem, L. R. Numes, W. Bogaerts, D. V. Thourhout, P. Bienstman, T. K. Liang, M. Tsuchiya, P. Jaenen, S. Beckx, J. Wouters, and R. Baets, “Linear and nonlinear nanophotonic devices based on silicon-on-insulator wire waveguides,” Jpn. J. Appl. Phys. 45(8B), 6589–6602 (2006).

Fukuda, H.

Gong, Y. D.

Green, W. M. J.

Hasama, T.

S.-H. Kim, G. Cong, H. Kawashima, T. Hasama, and H. Ishikawa, “Tilted MMI crossings based on silicon wire waveguide,” Opt. Express 22(3), 2545–2552 (2014).
[Crossref] [PubMed]

S. Namiki, T. Kurosu, K. Tanizawa, J. Kurumida, T. Hasama, H. Ishikawa, T. Nakatogawa, M. Nakamura, and K. Oyamada, “Ultrahigh-definition video transmission and extremely green optical networks,” IEEE J. Sel. Top. Quantum Electron. 17(2), 446–457 (2011).
[Crossref]

Igarashi, Y.

Ippen, E. P.

T. Barwicz, M. R. Watts, M. A. Popović, P. T. Rakich, L. Socci, F. X. Kärtner, E. P. Ippen, and H. I. Smith, “Polarization-transparent microphotonic devices in the strong confinement limit,” Nat. Photonics 1(1), 57–60 (2007).
[Crossref]

Ishikawa, H.

Itabashi, S.

Jaenen, P.

P. Dumon, G. Priem, L. R. Numes, W. Bogaerts, D. V. Thourhout, P. Bienstman, T. K. Liang, M. Tsuchiya, P. Jaenen, S. Beckx, J. Wouters, and R. Baets, “Linear and nonlinear nanophotonic devices based on silicon-on-insulator wire waveguides,” Jpn. J. Appl. Phys. 45(8B), 6589–6602 (2006).

Jinguji, K.

K. Jinguji, N. Takato, A. Sugita, and M. Kawachi, “Mach-Zehnder interferometer type optical wavelength-flattened coupling ratio,” Electron. Lett. 26(17), 1326–1327 (1990).
[Crossref]

Kärtner, F. X.

T. Barwicz, M. R. Watts, M. A. Popović, P. T. Rakich, L. Socci, F. X. Kärtner, E. P. Ippen, and H. I. Smith, “Polarization-transparent microphotonic devices in the strong confinement limit,” Nat. Photonics 1(1), 57–60 (2007).
[Crossref]

Kawachi, M.

K. Jinguji, N. Takato, A. Sugita, and M. Kawachi, “Mach-Zehnder interferometer type optical wavelength-flattened coupling ratio,” Electron. Lett. 26(17), 1326–1327 (1990).
[Crossref]

Kawashima, H.

Kim, S.-H.

Kurosu, T.

S. Namiki, T. Kurosu, K. Tanizawa, J. Kurumida, T. Hasama, H. Ishikawa, T. Nakatogawa, M. Nakamura, and K. Oyamada, “Ultrahigh-definition video transmission and extremely green optical networks,” IEEE J. Sel. Top. Quantum Electron. 17(2), 446–457 (2011).
[Crossref]

Kurumida, J.

S. Namiki, T. Kurosu, K. Tanizawa, J. Kurumida, T. Hasama, H. Ishikawa, T. Nakatogawa, M. Nakamura, and K. Oyamada, “Ultrahigh-definition video transmission and extremely green optical networks,” IEEE J. Sel. Top. Quantum Electron. 17(2), 446–457 (2011).
[Crossref]

Kuwatsuka, H.

Kwong, D. L.

Liang, T. K.

P. Dumon, G. Priem, L. R. Numes, W. Bogaerts, D. V. Thourhout, P. Bienstman, T. K. Liang, M. Tsuchiya, P. Jaenen, S. Beckx, J. Wouters, and R. Baets, “Linear and nonlinear nanophotonic devices based on silicon-on-insulator wire waveguides,” Jpn. J. Appl. Phys. 45(8B), 6589–6602 (2006).

Liow, T. Y.

Lipson, M.

Lo, G. Q.

Lo, G.-Q.

Masahara, M.

Matsukawa, T.

Morita, H.

T. Shoji, T. Tsuchizawa, T. Watanabe, K. Yamada, and H. Morita, “Low loss mode size converter from 0.3um square Si wire waveguides to singlemode fibres,” Electron. Lett. 38(25), 1669–1670 (2002).
[Crossref]

Nakamura, M.

S. Namiki, T. Kurosu, K. Tanizawa, J. Kurumida, T. Hasama, H. Ishikawa, T. Nakatogawa, M. Nakamura, and K. Oyamada, “Ultrahigh-definition video transmission and extremely green optical networks,” IEEE J. Sel. Top. Quantum Electron. 17(2), 446–457 (2011).
[Crossref]

Nakatogawa, T.

S. Namiki, T. Kurosu, K. Tanizawa, J. Kurumida, T. Hasama, H. Ishikawa, T. Nakatogawa, M. Nakamura, and K. Oyamada, “Ultrahigh-definition video transmission and extremely green optical networks,” IEEE J. Sel. Top. Quantum Electron. 17(2), 446–457 (2011).
[Crossref]

Namiki, S.

K. Suzuki, K. Tanizawa, T. Matsukawa, G. W. Cong, S.-H. Kim, S. Suda, M. Ohno, T. Chiba, H. Tadokoro, M. Yanagihara, Y. Igarashi, M. Masahara, S. Namiki, and H. Kawashima, “Ultra-compact 8 × 8 strictly-non-blocking Si-wire PILOSS switch,” Opt. Express 22(4), 3887–3894 (2014).
[Crossref] [PubMed]

S. Namiki, T. Kurosu, K. Tanizawa, J. Kurumida, T. Hasama, H. Ishikawa, T. Nakatogawa, M. Nakamura, and K. Oyamada, “Ultrahigh-definition video transmission and extremely green optical networks,” IEEE J. Sel. Top. Quantum Electron. 17(2), 446–457 (2011).
[Crossref]

Ning, G. X.

Numes, L. R.

P. Dumon, G. Priem, L. R. Numes, W. Bogaerts, D. V. Thourhout, P. Bienstman, T. K. Liang, M. Tsuchiya, P. Jaenen, S. Beckx, J. Wouters, and R. Baets, “Linear and nonlinear nanophotonic devices based on silicon-on-insulator wire waveguides,” Jpn. J. Appl. Phys. 45(8B), 6589–6602 (2006).

Ohno, M.

Oyamada, K.

S. Namiki, T. Kurosu, K. Tanizawa, J. Kurumida, T. Hasama, H. Ishikawa, T. Nakatogawa, M. Nakamura, and K. Oyamada, “Ultrahigh-definition video transmission and extremely green optical networks,” IEEE J. Sel. Top. Quantum Electron. 17(2), 446–457 (2011).
[Crossref]

Panepucci, R. R.

Pluk, E.

Popovic, M. A.

T. Barwicz, M. R. Watts, M. A. Popović, P. T. Rakich, L. Socci, F. X. Kärtner, E. P. Ippen, and H. I. Smith, “Polarization-transparent microphotonic devices in the strong confinement limit,” Nat. Photonics 1(1), 57–60 (2007).
[Crossref]

Priem, G.

P. Dumon, G. Priem, L. R. Numes, W. Bogaerts, D. V. Thourhout, P. Bienstman, T. K. Liang, M. Tsuchiya, P. Jaenen, S. Beckx, J. Wouters, and R. Baets, “Linear and nonlinear nanophotonic devices based on silicon-on-insulator wire waveguides,” Jpn. J. Appl. Phys. 45(8B), 6589–6602 (2006).

Rakich, P. T.

T. Barwicz, M. R. Watts, M. A. Popović, P. T. Rakich, L. Socci, F. X. Kärtner, E. P. Ippen, and H. I. Smith, “Polarization-transparent microphotonic devices in the strong confinement limit,” Nat. Photonics 1(1), 57–60 (2007).
[Crossref]

Rasras, M. S.

Schares, L.

Shinojima, H.

Shoji, T.

T. Shoji, T. Tsuchizawa, T. Watanabe, K. Yamada, and H. Morita, “Low loss mode size converter from 0.3um square Si wire waveguides to singlemode fibres,” Electron. Lett. 38(25), 1669–1670 (2002).
[Crossref]

Shum, P.

Smith, H. I.

T. Barwicz, M. R. Watts, M. A. Popović, P. T. Rakich, L. Socci, F. X. Kärtner, E. P. Ippen, and H. I. Smith, “Polarization-transparent microphotonic devices in the strong confinement limit,” Nat. Photonics 1(1), 57–60 (2007).
[Crossref]

Socci, L.

T. Barwicz, M. R. Watts, M. A. Popović, P. T. Rakich, L. Socci, F. X. Kärtner, E. P. Ippen, and H. I. Smith, “Polarization-transparent microphotonic devices in the strong confinement limit,” Nat. Photonics 1(1), 57–60 (2007).
[Crossref]

Suda, S.

Sugita, A.

K. Jinguji, N. Takato, A. Sugita, and M. Kawachi, “Mach-Zehnder interferometer type optical wavelength-flattened coupling ratio,” Electron. Lett. 26(17), 1326–1327 (1990).
[Crossref]

Suzuki, K.

Tadokoro, H.

Taillaert, D.

Takato, N.

K. Jinguji, N. Takato, A. Sugita, and M. Kawachi, “Mach-Zehnder interferometer type optical wavelength-flattened coupling ratio,” Electron. Lett. 26(17), 1326–1327 (1990).
[Crossref]

Tanizawa, K.

K. Suzuki, K. Tanizawa, T. Matsukawa, G. W. Cong, S.-H. Kim, S. Suda, M. Ohno, T. Chiba, H. Tadokoro, M. Yanagihara, Y. Igarashi, M. Masahara, S. Namiki, and H. Kawashima, “Ultra-compact 8 × 8 strictly-non-blocking Si-wire PILOSS switch,” Opt. Express 22(4), 3887–3894 (2014).
[Crossref] [PubMed]

S. Namiki, T. Kurosu, K. Tanizawa, J. Kurumida, T. Hasama, H. Ishikawa, T. Nakatogawa, M. Nakamura, and K. Oyamada, “Ultrahigh-definition video transmission and extremely green optical networks,” IEEE J. Sel. Top. Quantum Electron. 17(2), 446–457 (2011).
[Crossref]

Thourhout, D. V.

P. Dumon, G. Priem, L. R. Numes, W. Bogaerts, D. V. Thourhout, P. Bienstman, T. K. Liang, M. Tsuchiya, P. Jaenen, S. Beckx, J. Wouters, and R. Baets, “Linear and nonlinear nanophotonic devices based on silicon-on-insulator wire waveguides,” Jpn. J. Appl. Phys. 45(8B), 6589–6602 (2006).

Tsuchiya, M.

P. Dumon, G. Priem, L. R. Numes, W. Bogaerts, D. V. Thourhout, P. Bienstman, T. K. Liang, M. Tsuchiya, P. Jaenen, S. Beckx, J. Wouters, and R. Baets, “Linear and nonlinear nanophotonic devices based on silicon-on-insulator wire waveguides,” Jpn. J. Appl. Phys. 45(8B), 6589–6602 (2006).

Tsuchizawa, T.

Van Campenhout, J.

Van Thourhout, D.

Vlasov, Y. A.

Wang, Q.

Watanabe, T.

Watts, M. R.

T. Barwicz, M. R. Watts, M. A. Popović, P. T. Rakich, L. Socci, F. X. Kärtner, E. P. Ippen, and H. I. Smith, “Polarization-transparent microphotonic devices in the strong confinement limit,” Nat. Photonics 1(1), 57–60 (2007).
[Crossref]

Winzer, P. J.

Wouters, J.

P. Dumon, G. Priem, L. R. Numes, W. Bogaerts, D. V. Thourhout, P. Bienstman, T. K. Liang, M. Tsuchiya, P. Jaenen, S. Beckx, J. Wouters, and R. Baets, “Linear and nonlinear nanophotonic devices based on silicon-on-insulator wire waveguides,” Jpn. J. Appl. Phys. 45(8B), 6589–6602 (2006).

Wu, C. Q.

Xia, F.

Yamada, K.

Yan, M.

Yanagihara, M.

Yao, J.

Yu, M.

Zhang, H.

Zhang, J.

Zhou, J. Q.

Electron. Lett. (2)

T. Shoji, T. Tsuchizawa, T. Watanabe, K. Yamada, and H. Morita, “Low loss mode size converter from 0.3um square Si wire waveguides to singlemode fibres,” Electron. Lett. 38(25), 1669–1670 (2002).
[Crossref]

K. Jinguji, N. Takato, A. Sugita, and M. Kawachi, “Mach-Zehnder interferometer type optical wavelength-flattened coupling ratio,” Electron. Lett. 26(17), 1326–1327 (1990).
[Crossref]

IEEE J. Sel. Top. Quantum Electron. (1)

S. Namiki, T. Kurosu, K. Tanizawa, J. Kurumida, T. Hasama, H. Ishikawa, T. Nakatogawa, M. Nakamura, and K. Oyamada, “Ultrahigh-definition video transmission and extremely green optical networks,” IEEE J. Sel. Top. Quantum Electron. 17(2), 446–457 (2011).
[Crossref]

J. Lightwave Technol. (1)

Jpn. J. Appl. Phys. (1)

P. Dumon, G. Priem, L. R. Numes, W. Bogaerts, D. V. Thourhout, P. Bienstman, T. K. Liang, M. Tsuchiya, P. Jaenen, S. Beckx, J. Wouters, and R. Baets, “Linear and nonlinear nanophotonic devices based on silicon-on-insulator wire waveguides,” Jpn. J. Appl. Phys. 45(8B), 6589–6602 (2006).

Nat. Photonics (1)

T. Barwicz, M. R. Watts, M. A. Popović, P. T. Rakich, L. Socci, F. X. Kärtner, E. P. Ippen, and H. I. Smith, “Polarization-transparent microphotonic devices in the strong confinement limit,” Nat. Photonics 1(1), 57–60 (2007).
[Crossref]

Opt. Express (11)

E. Dulkeith, F. Xia, L. Schares, W. M. J. Green, and Y. A. Vlasov, “Group index and group velocity dispersion in silicon-on-insulator photonic wires,” Opt. Express 14(9), 3853–3863 (2006).
[Crossref] [PubMed]

H. Dong, P. Shum, M. Yan, J. Q. Zhou, G. X. Ning, Y. D. Gong, and C. Q. Wu, “Generalized Mueller matrix method for polarization mode dispersion measurement in a system with polarization-dependent loss or gain,” Opt. Express 14(12), 5067–5072 (2006).
[Crossref] [PubMed]

H. Fukuda, K. Yamada, T. Tsuchizawa, T. Watanabe, H. Shinojima, and S. Itabashi, “Ultrasmall polarization splitter based on silicon wire waveguides,” Opt. Express 14(25), 12401–12408 (2006).
[Crossref] [PubMed]

W. Bogaerts, D. Taillaert, P. Dumon, D. Van Thourhout, R. Baets, and E. Pluk, “A polarization-diversity wavelength duplexer circuit in silicon-on-insulator photonic wires,” Opt. Express 15(4), 1567–1578 (2007).
[Crossref] [PubMed]

J. Zhang, H. Zhang, S. Chen, M. Yu, G. Q. Lo, and D. L. Kwong, “A tunable polarization diversity silicon photonics filter,” Opt. Express 15(25), 16500–16505 (2007).
[PubMed]

Q. Wang and J. Yao, “A high speed 2x2 electro-optic switch using a polarization modulator,” Opt. Express 15(25), 16500–16505 (2007).
[Crossref] [PubMed]

H. Fukuda, K. Yamada, T. Tsuchizawa, T. Watanabe, H. Shinojima, and S. Itabashi, “Silicon photonic circuit with polarization diversity,” Opt. Express 16(7), 4872–4880 (2008).
[Crossref] [PubMed]

J. Van Campenhout, W. M. J. Green, and Y. A. Vlasov, “Design of a digital, ultra-broadband electro-optic switch for reconfigurable optical networks-on-chip,” Opt. Express 17(26), 23793–23808 (2009).
[Crossref] [PubMed]

G. W. Cong, T. Matsukawa, T. Chiba, H. Tadokoro, M. Yanagihara, M. Ohno, H. Kawashima, H. Kuwatsuka, Y. Igarashi, M. Masahara, and H. Ishikawa, “Large current MOSFET on photonic silicon-on-insulator wafers and its monolithic integration with a thermo-optic 2 × 2 Mach-Zehnder switch,” Opt. Express 21(6), 6889–6894 (2013).
[Crossref] [PubMed]

S.-H. Kim, G. Cong, H. Kawashima, T. Hasama, and H. Ishikawa, “Tilted MMI crossings based on silicon wire waveguide,” Opt. Express 22(3), 2545–2552 (2014).
[Crossref] [PubMed]

K. Suzuki, K. Tanizawa, T. Matsukawa, G. W. Cong, S.-H. Kim, S. Suda, M. Ohno, T. Chiba, H. Tadokoro, M. Yanagihara, Y. Igarashi, M. Masahara, S. Namiki, and H. Kawashima, “Ultra-compact 8 × 8 strictly-non-blocking Si-wire PILOSS switch,” Opt. Express 22(4), 3887–3894 (2014).
[Crossref] [PubMed]

Opt. Lett. (2)

Other (4)

S.-H. Kim, Y. Shoji, G. Cong, H. Kawashima, T. Hasama, and H. Ishikawa, “Polarization-diversity 2 × 2 switch with silicon-wire waveguide,” European Conference and Exhibition on Optical Communication, Technical Digest, paper We4B.5 (2013).

S. Nakamura, S. Takahashi, I. Ogura, J. Ushida, K. Kurata, T. Hino, H. Takeshita, A. Tajima, M.-B. Yu, and G.-Q. Lo, “High extinction ratio optical switching independently of temperature with silicon photonic 1×8 switch, ” Optical Fiber Communication Conference, OSA Technical Digest, paper OTu2I.3 (2012).

S. Nakamura, S. Takahashi, M. Sakauchi, T. Hino, M. Yu, and G. Lo, “Wavelength selective switching with one-chip silicon photonic circuit including 8 × 8 matrix switch,” Optical Fiber Communication Conference, OSA Technical Digest, paper OTuM.2 (2011).
[Crossref]

B. G. Lee, A. Rylyakov, W. M. J. Green, S. Assefa, C. W. Baks, R. Rimolo-Donadio, D. Kuchta, M. Khater, T. Barwicz, C. Reinholm, E. Kiewra, S. Shank, C. Schow, and Y. A. Vlasov, “Four- and Eight-Port Photonic Switches Monolithically Integrated with Digital CMOS Logic and Driver Circuits,” Optical Fiber Communication Conference, OSA Technical Digest, paper PDP5C.3 (2013).
[Crossref]

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (8)

Fig. 1
Fig. 1 Configuration of the polarization-diversity switch. SSC: spot-size converter, PS: polarization splitter, IS: TE-TM intersections, SW: Mach–Zehnder switch. All the components are based on silicon-wire waveguides with a size of 430 nm x 220 nm.
Fig. 2
Fig. 2 Cross-sectional diagram of the waveguide with the Pt heater (70-μm long, 5-μm wide, and 50-nm thick, 64Ω). Au electrodes were deposited for access to the heaters.
Fig. 3
Fig. 3 Microscopic image of the polarization-diversity switch. The total size of this switch is 600 × 500 μm2.
Fig. 4
Fig. 4 Transmittance at 1550 nm as a function of applied power for (a) TE and (b) TM polarization. The switch takes the “cross (bar)” state at a power of 40 (15) mW for TE polarization, whereas it takes the “cross (bar)” state at 30 (95) mW for TM polarization. The insertion loss of the diversity switch was evaluated to be 13 (12.1) dB for TE (TM) polarization, resulting in a PDL of 0.9 dB.
Fig. 5
Fig. 5 Transmittance as a function of wavelength for (a) TE, (b) TM, and (c) mixed polarization. The cross-state extinction ratios, i.e., T22/T21, for the TE and TM polarizations at 1550 nm were 34 dB and 26 dB, respectively.
Fig. 6
Fig. 6 Configuration of the four possible paths of 1 to 1’, 1 to 2’, 2 to 1’, and 2 to 2’ in the diversity switch. In this simple figure, the TM path has a longer physical length for 1-1’ while the TE path has a longer physical length for 2-2’.
Fig. 7
Fig. 7 Microscopic image of the path-length–compensated polarization-diversity switch. The path for TM was lengthened to compensate the small group index for TM, c.f. Fig. 3.
Fig. 8
Fig. 8 Measured DGD of the 1 to 1’, 1 to 2’, 2 to 1’, and 2 to 2’ paths in the diversity switch (a) without compensation and (b) with compensation. The measured values at 1550 nm for the paths 1-1’, 1-2’, 2-1’, and 2-2’ were 4.1 ps, 6.9 ps, 7.4 ps, and 10.2 ps without compensation, 2.3 ps, 2.7 ps, 2.6 ps, and 3.2 ps with compensation, respectively.

Tables (1)

Tables Icon

Table 1 Calculated physical length and DGD for different paths, including the input and output access waveguides.

Metrics