Expand this Topic clickable element to expand a topic
Skip to content
Optica Publishing Group
  • Chinese Optics Letters
  • Vol. 18,
  • Issue 5,
  • pp. 051201-
  • (2020)

Displacement measurement method based on laser self-mixing interference in the presence of speckle

Not Accessible

Your library or personal account may give you access

Abstract

In order to achieve the accurate measurement of displacement, this Letter presents a self-mixing interference displacement measurement method suitable for the speckle effect. Because of the speckle effect, the amplitude of the self-mixing interference signal fluctuates greatly, which will affect the measurement accuracy of displacement. The ensemble empirical mode decomposition is used to process the interference signal, which can filter out high-frequency noise and low-frequency noise at the same time. The envelope of the self-mixing interference signal is extracted by Hilbert transform, and it is used to realize the normalization of the signal. Through a series of signal processing, the influence of speckle can be effectively reduced, and the self-mixing interference signal can be transformed into standard form. The displacement can be reconstructed by fringe counting and the interpolation method. The experimental results show that the method is successfully applied to the displacement measurement in the presence of speckle, which verifies the effectiveness and feasibility of the method.

© 2020 Chinese Laser Press

PDF Article
More Like This
Rotation angle measurement method based on self-mixing interference of a fiber laser

Yan Zhao, Yonghang Zhang, Haiwei Zhang, Lifang Xue, Minjia Ren, and Yinping Miao
Appl. Opt. 61(11) 3174-3181 (2022)

High-precision rotation angle measurement method based on polarization self-mixing interference

Yan Zhao, Chuanwu Zha, Bin Liu, and Fangfang Han
Appl. Opt. 62(27) 7248-7253 (2023)

Secondary envelope extraction based on multiple Hilbert transforms for laser self-mixing micro-vibration measurement

Xiangyu Cui, Chunsheng Li, Yuhan Geng, Weijie Ge, Lingling Kan, and Zihua Zhang
Appl. Opt. 58(34) 9392-9397 (2019)

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Select as filters


Select Topics Cancel
© Copyright 2024 | Optica Publishing Group. All rights reserved, including rights for text and data mining and training of artificial technologies or similar technologies.