Expand this Topic clickable element to expand a topic
Skip to content
Optica Publishing Group
  • Chinese Optics Letters
  • Vol. 18,
  • Issue 3,
  • pp. 033501-
  • (2020)

Influence of γ-Fe2O3 nanoparticles doping on the image sticking in VAN-LCD

Not Accessible

Your library or personal account may give you access

Abstract

Image sticking in liquid crystal display (LCD) is related to the residual direct current (DC) voltage (RDCV) on the cell and the dynamic response of the liquid crystal materials. According to the capacitance change of the liquid crystal cell under the DC bias, the saturated RDCV (SRDCV) can be obtained. The response time can be obtained by testing the optical dynamic response of the liquid crystal cell, thereby evaluating the image sticking problem. Based on this, the image sticking of vertical aligned nematic (VAN) LCD (VAN-LCD) with different cell thicknesses (3.8 μm and 11.5 μm) and different concentrations of γ-Fe2O3 nanoparticles (0.017 wt.%, 0.034 wt.%, 0.051 wt.%, 0.068 wt.%, 0.136 wt.%, 0.204 wt.%, and 0.272 wt.%) was evaluated, and the effect of nano-doping was analyzed. It is found that the SRDCV and response time decrease firstly and then increase with the increase of the doping concentration of γ-Fe2O3 nanoparticles in the VAN cell. When the doping concentration is 0.034 wt.%, the γ-Fe2O3 nanoparticles can adsorb most of the free impurity ions in liquid crystal materials, resulting in 70% reduction in the SRDCV, 8.11% decrease in the decay time, and 15.49% reduction in the rise time. The results show that the doping of γ-Fe2O3 nanoparticles can effectively improve the image sticking of VAN-LCD and provide useful guidance for improving the display quality.

© 2020 Chinese Laser Press

PDF Article
More Like This
Enhancement of electro-optic properties in liquid crystal devices via titanium nanoparticle doping

Yong-Seok Ha, Hyung-Jun Kim, Hong-Gyu Park, and Dae-Shik Seo
Opt. Express 20(6) 6448-6455 (2012)

Highly enhanced voltage holding property for low-frequency-driven fringe-field switching liquid crystal mode by charge-trapping effect of carbon-nanotube-doped surface

Jun-Chan Choi, Dong-Jin Lee, Min-Kyu Park, Ji-Sub Park, Joun-Ho Lee, Ji-Ho Baek, Hyun Chul Choi, and Hak-Rin Kim
Opt. Express 27(20) 29178-29195 (2019)

Tunable pretilt angles based on nanoparticles-doped planar liquid-crystal cells

Shie-Chang Jeng, Shug-June Hwang, and Chen-Yu Yang
Opt. Lett. 34(4) 455-457 (2009)

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Select as filters


Select Topics Cancel
© Copyright 2024 | Optica Publishing Group. All rights reserved, including rights for text and data mining and training of artificial technologies or similar technologies.